更新时间:2018-12-27 17:41:21
封面
版权信息
前言
第1章 绪论
1.1 微电子
1.1.1 光学光刻和极紫外光刻技术
1.1.2 电子束光刻技术
1.1.3 离子束光刻技术
1.1.4 X射线光刻技术
1.2 微机电系统
1.2.1 微机电系统简介
1.2.2 LIGA技术
1.2.3 准LIGA技术
1.3 微复制技术
1.3.1 微复制的意义
1.3.2 微复制工艺及其应用
1.3.3 基于聚合物的微系统
1.4 纳米技术
1.5 纳米压印技术概述
1.5.1 纳米压印技术的原理及特点
1.5.2 纳米压印技术的发展
1.5.3 纳米压印技术的应用
1.6 纳米压印技术的研究现状
1.6.1 国外研究现状
1.6.2 国内研究现状
1.6.3 纳米压印技术专利分析
第2章 纳米压印工艺概述
2.1 纳米压印工艺
2.1.1 热压印
2.1.2 紫外压印
2.1.3 微接触印刷
2.1.4 常用纳米压印方法的比较
2.2 软刻蚀技术
2.3 纳米压印印章
2.4 压印聚合物
第3章 纳米印章制备新方法
3.1 FIB制备纳米印章的新途径
3.1.1 聚焦离子束系统的工作原理和构成
3.1.2 聚焦离子束系统的应用
3.1.3 用聚焦离子束技术进行纳米压印印章的制备
3.2 全息曝光制备微纳米印章
3.3 纳米球光刻法加工印章
3.4 纳米压印方法制备纳米压印印章
3.5 纳米压印和光学光刻结合制备三维印章
3.6 旋涂法制备PDMS印章
3.6.1 旋涂法制备PDMS印章的原理和工艺流程
3.6.2 旋涂法制备PDMS印章的具体实例
3.6.3 旋涂法制备PDMS印章的实验结果
3.7 热压法大规模制备PDMS印章的新方法
3.7.1 热压法大规模制备PDMS印章的工艺路线
3.7.2 热压法大规模制备PDMS印章的实例
3.7.3 热压法大规模制备PDMS印章的实验结果与讨论
3.8 PDMS印章中的缺陷分析
3.8.1 空孔
3.8.2 裂纹
第4章 纳米压印结果分析
4.1 纳米压印印章抗粘连层的制备
4.1.1 干法抗黏
4.1.2 湿法抗黏
4.1.3 两种方法对比
4.2 微压印结果及分析
4.2.1 硅模具和镍模具制备
4.2.2 硅模具和镍模具微压印PMMA、PC
4.2.3 不同线宽和图形的合格率分析
4.2.4 线条镍模具的微米压印
4.2.5 对可压印材料PETG的研究
4.3 铝线条印章压印mr-I 9020
4.3.1 mr-I 9020胶介绍
4.3.2 铝线条印章压印mr-I 9020
4.3.3 压印胶中的缺陷
4.4 正交法对纳米压印工艺的优化
4.4.1 正交法的意义与原理
4.4.2 热压印工艺中正交法的因子和水平
4.4.3 正交法对工艺的优化研究
4.5 石英模具室温压印Hybrane
4.5.1 Hybrane胶介绍
4.5.2 Hybrane胶的配置
4.5.3 石英印章压印Hybrane
4.6 复杂图案硅印章压印SU⁃8
4.6.1 硅印章制备
4.6.2 印章形貌
4.6.3 SU⁃8 胶的旋涂
4.6.4 硅印章压印SU⁃8
4.7 后续转移图案
4.7.1 残留胶厚度的计算
4.7.2 O2刻蚀速率计算
4.7.3 SF6刻蚀速率对比计算
4.7.4 双气体连续刻蚀法进行图案转移
4.7.5 单一气体刻蚀法进行图案转移
第5章 纳米压印理论
5.1 聚合物流变机理
5.2 压印胶的流动行为
5.3 纳米压印填充时间的理论计算
5.4 有效压强的理论分析及提高印章寿命的新方法
5.5 纳米压印理论的最新研究进展
第6章 纳米压印仿真
6.1 印章抗粘连层材料的选择
6.1.1 分子动力学方法与原理
6.1.2 分子动力学方法选择印章抗粘连层物质
6.2 分子动力学对纳米压印工艺的仿真