
会员
TensorFlow神经网络到深度学习
更新时间:2021-05-19 18:19:12
最新章节:参考文献开会员,本书免费读 >
本书以TensorFlow为平台,从神经网络到深度学习由浅入深进行介绍,书中每章都以理论引出,以TensorFlow应用巩固结束,做到理论与实践相结合,使读者快速了解神经网络、深度学习等内容,同时领略利用TensorFlow解决这些问题的简单和快捷。本书共12章,主要内容包括TensorFlow软件介绍、计算机视觉与深度学习、深度神经网络的基础、全连接神经网络、卷积神经网络、高级卷积神经网络、循环神经网络、对抗神经网络、其他监督学习、非监督学习、自动编码机、强化学习等。
上架时间:2021-04-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
最新上架
- 会员
深度学习与大模型基础
本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。计算机23.6万字 - 会员
AI律师助手:律师实务ChatGPT实战指南
本书具体包含以下内容:首先,探讨ChatGPT对法律界的冲击,以及律师等从业者的不同反应,进一步分析AI技术对行业的影响和发展趋势。接着,简要介绍ChatGPT的技术原理及应用场景。随后,详细讨论如何将AI力量融入律师职业路径,构建专业律师成长的新飞轮。接下来,分别讨论如何将ChatGPT(GPTs)应用于渠道与案源、检索与研究、案件分析,以及法律文书撰写与合同审核,实现部分日常事务自动化执行。之计算机10.6万字 - 会员
AI短视频文案写作从入门到精通
本书共分为10章。第1章介绍短视频文案与AIGC;第2章为AIGC工具助力文案选题策划;第3章为短视频标题撰写与优化;第4章为短视频脚本与情节设计;第5章为短视频带货文案写作;第6章为评论区互动文案写作;第7章为段子文案写作;第8章为短视频内容标签化;第9章为短视频营销文案写作;第10章为短视频与AI的有机结合。计算机8.8万字 - 会员
ChatGPT手册:初学者指南与应用实战
本书理论联系实际,全面地介绍ChatGPT的主要应用场景,帮助读者掌握ChatGPT的使用方法和技巧。本书不仅讲述了ChatGPT在学习、写作、工作、生活方面的应用案例,还介绍了一个打造个人品牌的综合应用,内容实用,可操作性强。本书适合希望了解ChatGPT的初学者阅读。计算机9.6万字 具身智能:人工智能的下一个浪潮
自人工智能(AI)的概念诞生之日起,科学家们就热衷于探讨它的发展路径。第一阶段毫无疑问是计算智能,经过半个多世纪,AI在运算能力和记忆方面早已超越人类。第二阶段,是感知智能,让机器可以看得懂听得懂这个世界。科学界认为,尚未到来的第三阶段,是认知智能,甚至提到一个词:认知时代。我们来到大模型时代或者是生成式人工智能时代了吗?如果我们此时此刻正身处这个时代,那上一个是什么时代?有人说,大规模预训练已经计算机11.3万字- 会员
AI赋能HR:AI 10倍提升HR工作效率的方法与实践
这是一本全方位讲解如何利用AI工具为HR赋能的著作,是AI时代HR提升职场竞争力的实战指南。作者基于深厚的HR管理经验和AI实战经验,通过科学的方法、高效的提示词、丰富的案例、清晰的步骤,细致地讲解了如何利用AI工具提高工作效率、优化管理流程、提升人才管理水平。从AIGC的基础知识到AI工具的使用,从AI在人力资源全生命周期所有场景中的应用到使用AI的风险防控,本书全面系统地讲解了HR需要掌握的全计算机20.6万字 - 会员
深度学习时代的计算机视觉算法
本书着重阐述了深度学习时代的计算机视觉算法的工作原理,首先对深度学习与计算机视觉基础进行了介绍,之后对卷积神经网络结构的演化过程,以及基于深度学习的目标检测算法、图像分割算法、人体姿态估计算法、行人重识别与目标跟踪算法、人脸识别算法以及图像超分辨率重建方法进行了介绍。本书系统讲解了在日常生活和工作中常见的几项计算机视觉任务,并着重介绍了在当今深度学习时代,这些计算机视觉任务是如何工作的,可使读者快计算机9.9万字 智能汽车软件功能安全
这是一本从实践角度系统且深入地讲解智能汽车软件功能安全和智能汽车软件研发的著作,得到了中国工程院院士李克强等13位产业界和学术界专家的一致推荐。作者在功能安全领域深耕10余年,有扎实的理论基础、丰富的实践经验,用挖掘本质的思维方法来撰写本书,从研发体系、架构设计、开发流程、开发方法、安全措施、创新研究等维度对智能汽车软件功能安全做了深入的讲解。全书共11章,分为3个部分。第一部分(第1~3章)智能计算机25.9万字- 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字