2.4 智能天线的特殊参数
智能天线利用数字信号处理技术,采用了先进的波束切换技术(Switched Beam Technology)和自适应空间数字处理技术(Adaptive Spatial Digital Processing Technology),产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。传统无线基站的最大弱点是浪费无线电信号能量,在一般情况下,只有极小一部分信号能量到达收信方。此外,当基站收听信号时,它接收的不仅是有用信号而且还收到其他干扰信号。智能天线则不然,它能够更有效地收听特定用户的信号和更有效地将信号能量传递给该用户。不同于传统的时分多址(TDMA)、频分多址(FDMA)或码分多址(CDMA)方式,智能天线引入了第四维多址方式:空分多址(SDMA)方式。在相同时隙、相同频率或相同地址码情况下,用户仍可以根据信号不同的空间传播路径而区分。智能天线相当于空时滤波器,在多个指向不同用户的并行天线波束控制下,可以显著降低用户信号彼此间干扰。具体而言,智能天线在以下几方面提高了移动通信系统的性能。
(1)扩大系统的覆盖区域。
(2)提高系统容量。
(3)提高频谱利用效率。
(4)降低基站发射功率,节省系统成本,减少信号间干扰与电磁环境污染。
智能天线分为两大类:多波束智能天线与自适应阵列智能天线,简称多波束天线和自适应阵天线。多波束天线利用多个并行波束覆盖整个用户区,每个波束的指向是固定的,波束宽度也随阵元数目的确定而确定。随着用户在小区中的移动,基站选择不同的相应波束,使接收信号最强。因为用户信号并不一定在固定波束的中心处,当用户位于波束边缘,干扰信号位于波束中央时,接收效果最差,所以多波束天线在实现信号最佳接收方面有一定困难,一般只用作接收天线。但是与自适应阵天线相比,多波束天线具有结构简单、无需判定用户信号到达方向的优点。
自适应阵天线一般采用4~16天线阵元结构,阵元间距一般取1/2波长,若阵元间距过大,则接收信号彼此相关程度降低,太小则会在方向图形成不必要的栅瓣,故一般取半波长。阵元分布方式有直线型、圆环型和平面型。自适应天线是智能天线的主要类型,可以实现全向天线,完成用户信号接收和发送。自适应阵天线系统采用数字信号处理技术识别用户信号到达方向,并在此方向形成天线主波束。自适应阵天线根据用户信号的不同空间传播方向提供不同的空间信道,类似于信号有线传输的线缆,有效克服了干扰对系统的影响。
智能天线在3G和4G移动通信中都得到了应用,移动通信基站智能天线的发展方向是大规模有源相控阵和3D波束赋形,这是一种已经在军用雷达中得到广泛应用的技术,在第6 章有专门介绍。就TD-SCDMA系统中使用的智能天线,有若干特有的参数,如表2-8所示。
表2-8 TD-SCDMA系统智能天线的特有参数