第67章 历四上(2)
凡合朔所交,冬在阴历、夏在阳历,月行青道;(冬至、夏至后,青道半交在春分之宿,当黄道东。立冬、立夏后,青道半交在立春之宿,当黄道东南。至所冲之宿,亦如之。)冬在阳历、夏在阴历,月行白道;(冬至、夏至后,白道半交在秋分之宿,当黄道西。立冬、立夏后,白道半交在立秋之宿,当黄道西北。至所冲之宿,亦如之。)春在阳历、秋在阴历,月行朱道;(春分、秋分后,朱道半交在夏至之宿,当黄道南。立春、立秋后,朱道半交在立夏之宿,当黄道西南。至所冲之宿,亦如之。)春在阴历,秋在阳历,月行黑道。(春分、秋分后,黑道半交在冬至之宿,当黄道北,立春、立秋后,黑道半交在立冬之宿,当黄道东北。至所冲之宿,亦如之。)四序离为八节,至阴阳之所交,皆与黄道相会,故月有九行。各视月交所入七十二候距交初中黄道日度,每五度为限,亦初数十二,每限减一,数终于四、乃一度强,依平。更从四起,每限增一,终于十二,而至半交,其去黄道六度。又自十二,每限减一,数终于四,亦一度强,依平。更从四起,每限增一,终于十二,复与日轨相会。各累计其数,以乘限度,二百四十而一,得度。不满者,二十四除,为分,(若以二十除之,则大分,以十二为母。)为月行与黄道差数。距半交前后各九限,以差数为减;距正交前后各九限,以差数为加。(此加减出入六度,单与黄道相较之数。若较之赤道,则随气迁变不常。)计去冬至、夏至以来候数,乘黄道所差,十八而一,为月行与赤道差数。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行宿度,入春分交后行阴历、秋分交后行阳历,皆为同名。若入春分交后行阳历、秋分交后行阴历,皆为异名。其在同名,以差数为加者加之,减者减之;若在异名,以差数为加者减之,减者加之。皆以增损黄道度,为九道定度。
各以中气去经朔日算,加其入交泛,乃以减交终,得平交入中气日算。满三元之策去之,余得入后节日算。(因求次交者,以交终加之,满三元之策去之,得后平交入气日算。)
各以气初先后数先加、后减之,得平交入定气日算。倍六爻乘之,三其小余,辰法除而从之,以乘其气损益率,如定气辰数而一,所得以损益其气杋杊积,为定数。
又置平交所入定气余,加其日夜半入转余,以乘其日损益率,满通法而一,以损益其日杋杊积,交率乘之,交数而一,为定数。乃以入气入转杋杊定数,杋减、杊加平交入气余,满若不足,进退日算,为正交入定气日算。其入定气余,副之,乘其日盈缩分,满通法而一,以盈加、缩减其副,以加其日夜半日度,得正交加时黄道日度。以正交加时度余减通法,余以正交之宿距度所入限数乘之,为距前分。置距度下月道与黄道差,以通法乘之,减去距前分,余满二百四十除,为定差;不满者一退为秒。以定差及秒加黄道度、余,仍计去冬至、夏至已来候数乘定差,十八而一,所得依名同异而加减之,满若不足,进退其度,得正交加时月离九道宿度。
各置定朔、弦、望加时日度,从九道循次相加。凡合朔加时,月行潜在日下,与太阳同度,是谓离象。(先置朔、弦、望加时黄道日度,以正交加时所在黄道宿度减之,余以加其正交九道宿度,命起正交宿度算外,即朔、弦、望加时所当九道宿度也。其合朔加时,若非正交,则日在黄道,月在九道,各入宿度虽多少不同,考其去极,若应绳准。故云:月行潜在日下,与太阳同度。)以一象之度九十一、余九百五十四、秒二十二半为上弦,兑象。倍之,而与日冲,得望,坎象。参之,得下弦,震象。各以加其所当九道宿度,秒盈象统从余,余满通法从度,得其日加时月度。(综五位成数四十,以约度余,为分;不尽者,因为小分。)
视经朔夜半入转,若定朔大余有进退者,亦加、减转日。否则因经朔为定。累加一日,得次日,各以夜半入转余乘列衰,如通法而一,所得以进加、退减其日转分,为月转定分。满转法,为度。
视定朔、弦、望夜半入转,各半列衰以减转分。退者,定余乘衰,以通法除,并衰而半之;进者,半余乘衰,亦以通法除:皆加所减。乃以定余乘之,盈通法得一,以减加时月度,为夜半月度。各以每日转定分累加之,得次日。若以入转定分,乘其日夜漏,倍百刻除,为晨分。以减转定分,余为昏分。望前以昏、望后以晨加夜半度,各得晨、昏月。
各视每日夜半入阴阳历交日数,以其下屈伸积,月道与黄道同名者,加之;异名者,减之。各以加、减每日辰昏黄道月度,为入宿定度及分。
五曰步轨漏术
爻统千五百二十。
象积四百八十。
辰八刻百六十分。
昏、明二刻二百四十分。
各置其气消息衰,依定气所有日,每以陟降率陟减、降加其分,满百从衰,各得每日消息定衰。其距二分前后各一气之外,陟、降不等,皆以三日为限。雨水初日,降七十八;初限,日损十二;次限,日损八;次限,日损三;次限,日损二;次限,日损后。清明初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十九。处暑初日,降九十九;初限,日损十九;次限,日损八;次限,日损三;次限,日损二;末限,日损一。寒露初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,日益十二。各置初日陟降率,依限次损益之,为每日率。乃递以陟减、降加气初消息衰,各得每日定衰。
南方戴日之下,正中无晷。自戴日之北一度,乃初数千三百七十九。自此起差,每度增一,终于二十五度,计增二十六分。又每度增二,终于四十度。又每度增六,终于四十四度,增六十八。又每度增二,终于五十度。又每度增七,终于五十五度。又每度增十九,终于六十度,增百六十。又每度增三十三,终于六十五度。又每度增三十六,终于七十度。又每度增三十九,终于七十二度,增二百六十。又度增四百四十。又度增千六十。又度增千八百六十。又度增二千八百四十。又度增四千。又度增五千三百四十。各为每度差。因累其差,以递加初数,满百为分,分十为寸,各为每度晷差。又累其晷差,得戴日之北每度晷数。
各置其气去极度,以极去戴日度五十六及分八十二半减之,得戴日之北度数。各以其消息定衰所直度之晷差,满百为分,分十为寸,得每日晷差。乃递以息减、消加其气初晷数,得每日中晷常数。
以其日处在气定小余,爻统减之,余为中后分。不足减,反相减,为中前分。以其晷差乘之,如通法而一,为变差。以加、减中晷常数,(冬至后,中前以差减,中后以差加;夏至后,中前以差加,中后以差减。冬至一日,有减无加;夏至一日,有加无减。)得每日中晷定数。
又置消息定衰,满象积为刻,不满为分。各递以息减、消加其气初夜半漏,得每日夜半漏定数。其全刻,以九千一百二十乘之,十九乘刻分从之,如三百而一,为晨初余数。
各倍夜半漏,为夜刻。以减百刻,余为昼刻。减昼五刻以加夜,即昼为见刻,夜为没刻。半没刻加半辰,起子初算外,得日出辰刻。以见刻加而命之,得日入。(置夜刻,五而一,得每更差刻。又五除之,得每筹差刻。以昏刻加日入辰刻,得甲夜初刻。又以更筹差加之,得五夜更筹所当辰。其夜半定漏,亦名晨初夜刻。)
又置消息定衰,满百为度,不满为分。各递以息减、消加气初去极度,各得每日去极定数。
又置消息定衰,以万二千三百八十六乘之,如万六千二百七十七而一,为度差。差满百为度。各递以息加、消减其气初距中度,得每日距中度定数。倍之,以减周天,为距子度。
置其日赤道日度,加距中度,得昏中星。倍距子度,以加昏中星,得晓中星。命昏中星为甲夜中星,加每更差度,得五夜中星。
凡九服所在,每气初日中晷常数不齐。使每气去极度数相减,各为其气消息定数。因测其地二至日晷,(测一至可矣,不必兼要冬夏。)于其戴日之北每度晷数中,较取长短同者,以为其地戴日北度数及分。每气各以消息定数加减之,(因冬至后者,每气以减。因夏至后者,每气以加。)得每气戴日北度数。各因所直度分之晷数,为其地每定气初日中晷常数。(其测晷有在表南者,亦据其晷尺寸长短与戴日北每度晷数同者,因取其所直之度,去戴日北度数。反之,为去戴日南度。然后以消息定数加减之。)
二至各于其地下水漏以定当处昼夜刻数。乃相减,为冬、夏至差刻。半之,以加、减二至昼夜刻数,为定春、秋分初日昼夜刻数。乃置每气消息定数。以当处差刻数乘之,如二至去极差度四十七分,八十而一,所得依分前、后加、减初日昼夜漏刻,各得余定气初日昼夜漏刻。
置每日消息定衰,亦以差刻乘之,差度而一,所得以息减、消加其气初漏刻,得次日。(其求距中度及昏明中星日出入,皆依阳城法求之。仍以差刻乘之,差度而一,为今有之数。)若置其地春、秋定日中晷常数与阳城每日晷数,较其同者,因其日夜半漏亦为其地定春、秋分初日夜半漏。求余定气初日,亦以消息定数依分前、后加、减刻分,(春分后以减,秋分后以加。)满象积为刻。求次日,亦以消息定衰,依阳城术求之。(此术究理,大体合通。然高山平川,视日不等。较其日晷,长短乃同。考其水漏,多少殊别。以兹参课,前术为审。)