Prior Analytics
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第60章

To convert a syllogism means to alter the conclusion and make another syllogism to prove that either the extreme cannot belong to the middle or the middle to the last term. For it is necessary, if the conclusion has been changed into its opposite and one of the premisses stands, that the other premiss should be destroyed. For if it should stand, the conclusion also must stand. It makes a difference whether the conclusion is converted into its contradictory or into its contrary. For the same syllogism does not result whichever form the conversion takes. This will be made clear by the sequel. By contradictory opposition I mean the opposition of 'to all' to 'not to all', and of 'to some' to 'to none'; by contrary opposition I mean the opposition of 'to all' to 'to none', and of 'to some' to 'not to some'. Suppose that A been proved of C, through B as middle term.

If then it should be assumed that A belongs to no C, but to all B, B will belong to no C. And if A belongs to no C, and B to all C, A will belong, not to no B at all, but not to all B. For (as we saw) the universal is not proved through the last figure. In a word it is not possible to refute universally by conversion the premiss which concerns the major extreme: for the refutation always proceeds through the third since it is necessary to take both premisses in reference to the minor extreme. Similarly if the syllogism is negative. Suppose it has been proved that A belongs to no C through B. Then if it is assumed that A belongs to all C, and to no B, B will belong to none of the Cs. And if A and B belong to all C, A will belong to some B: but in the original premiss it belonged to no B.

If the conclusion is converted into its contradictory, the syllogisms will be contradictory and not universal. For one premiss is particular, so that the conclusion also will be particular. Let the syllogism be affirmative, and let it be converted as stated. Then if A belongs not to all C, but to all B, B will belong not to all C. And if A belongs not to all C, but B belongs to all C, A will belong not to all B. Similarly if the syllogism is negative. For if A belongs to some C, and to no B, B will belong, not to no C at all, but-not to some C. And if A belongs to some C, and B to all C, as was originally assumed, A will belong to some B.

In particular syllogisms when the conclusion is converted into its contradictory, both premisses may be refuted, but when it is converted into its contrary, neither. For the result is no longer, as in the universal syllogisms, refutation in which the conclusion reached by O, conversion lacks universality, but no refutation at all. Suppose that A has been proved of some C. If then it is assumed that A belongs to no C, and B to some C, A will not belong to some B: and if A belongs to no C, but to all B, B will belong to no C. Thus both premisses are refuted. But neither can be refuted if the conclusion is converted into its contrary. For if A does not belong to some C, but to all B, then B will not belong to some C. But the original premiss is not yet refuted: for it is possible that B should belong to some C, and should not belong to some C. The universal premiss AB cannot be affected by a syllogism at all: for if A does not belong to some of the Cs, but B belongs to some of the Cs, neither of the premisses is universal. Similarly if the syllogism is negative: for if it should be assumed that A belongs to all C, both premisses are refuted: but if the assumption is that A belongs to some C, neither premiss is refuted. The proof is the same as before.