第2章 不一样的博弈
要想在现代社会做一个有文化的人,你必须对博弈论有一个大致的了解。
——诺贝尔奖得主保罗·萨缪尔森
哈佛的博弈课程先从与博弈相关的几个话题开始,就如何应对现实中的难题提供一些初步的思路。我们意在指出:类似的情形普遍存在,而且形成了一系列相互关联的问题,系统地思考这些问题能够让大家在处事时取得事半功倍的效果。
绑住自己的手
在希腊神话中,遥远的海面上有一座岛屿,石崖边居住着吟唱魔歌的海妖塞壬三姐妹。半人半鸟的塞壬姐妹,坐在花丛里唱着蛊惑人心的歌谣,美妙的歌声把过往的船只引向该岛,它们撞上礁石便船毁人亡。过往的海员和船只都受到迷惑走向毁灭,无一幸免。
奥德修斯事先得知塞壬那令凡人无法抗拒的致命歌声,于是命令水手用蜡封住耳朵,并将自己用绳索绑在桅杆上。他还告诫手下,在通过死亡岛时不要理会他的任何命令和手势。
在船只驶经海岛的时候,迷人的歌声如期传出。那歌声是如此令人神往,奥德修斯完全沉浸其中,他绝望地挣扎着想要解除束缚,并向水手们叫喊着要求他们驶向塞壬姐妹,但没人理他。海员们驾驶船只一直向前,直到最后再也听不到歌声才给奥德修斯松绑,取出他们耳朵中的蜡。这次塞壬三姐妹白费力气,算是开了一场免费的演唱会。而且三姐妹中的老大帕耳塞洛珀深深地爱上了奥德修斯,当他的船只过去之后,她就投海自尽了。
奥德修斯的选择是在和未来的自己对抗。奥德修斯知道,如果他允许未来的自己听塞壬唱歌,未来的自己就会把船开向礁石。所以,他绑住了自己的手。但生活中,很多人在面对类似的问题时,通常都任由未来的自己获胜,因为人们总是最后才行动,不懂得预先做出安排。解决这一问题的方法是,改变对未来自己的激励,从而改变自己的行为。
蚂蚁和狮子的策略
我们可以用博弈论来研究动物的行为,如果持某种基因的狮子或蚂蚁数量壮大了,这并不是说它们选择了这种策略,只是说明带有该基因的狮子或蚂蚁能繁衍出很多的后代而已。
我们假设博弈主体是一个巨大的种群,种群中所有个体都采用相同的策略S,这是与生俱来的。假设突然间出现了一种变异,有那么一小部分个体开始采用别的策略,比如是S’。那么这个采用S’的突变小群体会不断繁衍还是灭绝呢?如果对于任何可能出现的突变情况,即任何采用S’的突变小群体最后都灭绝了,那么原始策略S就是进化稳定的,不过前提是它对所有可能的突变都成立。
有一点要注意,开始时变异个体很少,因此进行随机配对的时候,大多数情况下它们是和S进行配对的,偶尔才会遇到别的突变个体。因此大多数情况下我们只需要研究突变个体在现有种群中的生存状况即可。
假设一群蚂蚁与生俱来地选择策略S,都进行随机配对。
两只配对的蚂蚁与生俱来地选择合作,它们各自收益为2(为了便于说明收益情况,我们采用这种用数字代替收益的模式)。从基因的适应性上来说,它们的选择很好。两只蚂蚁生出另一只蚂蚁,整个种群中合作型的蚂蚁互相配对,就会繁殖出更多的合作型蚂蚁。
现在再假设突然产生了一个突变个体,这个小小的突变产生了一种不合作的蚂蚁。合作型的蚂蚁是占大多数的,但现在有一小部分的蚂蚁突变后不合作了,采用策略S’。大多数合作型的蚂蚁相互配对,大家互利共生。但如果一个突变个体和一个合作型蚂蚁随机配对,接下来会发生什么呢?
对于合作型蚂蚁来说这很不幸,它和一只不太友善的蚂蚁进行了配对。假设这只合作型蚂蚁叫尼克,选策略S,不合作型蚂蚁拉胡尔选择策略S’。尼克的收益为0,也就是说它被淘汰了。而拉胡尔的收益是3,这样就不仅仅只有一个拉胡尔了,突变个体的数量将增多并继续配对。每一次配对时,合作型蚂蚁中的一部分会跟其他合作型蚂蚁配对。但是,有时候合作型蚂蚁会和某一个突变个体配对,而且其概率越来越大,这些突变个体的数量会不断增长。如果合作策略是进化稳定的,那么突变小群体就会慢慢消失而不产生更多的突变个体。但是现在这种突变个体不但没有灭绝反而不断繁衍,在随机配对中,突变个体的收益更大,这也就意味着突变个体不会灭绝,而将不断壮大。由此我们可以得出,合作不是进化稳定策略。
在这个例子中,我们把基因当作策略,把遗传适应性当作收益。这里的重点就是,带有适合基因的个体会繁衍,带有不适合基因的个体会灭绝,即好的策略会使种群不断壮大。我们从中得出的结论就是,自然选择的进化结果是糟糕而低效的。
整体与联盟的较量
一个原始部落共有100个猎人,部落规定:猎人们每天早出晚归地打猎,并把打到的所有猎物带回部落,所有猎物在这100个猎人中平均分配。日复一日,年复一年,一直以来都是如此。
设想某个年代,其中一个猎人富有政治头脑,并具有与生俱来的领袖气质与领导才能。他采用各种方法,拉拢了50个人,组成一个利益集团,并和这50个人协商,要求进行投票以确定每个猎人的打猎技术高低,并以此来确定猎物的分配比例。很自然地,这个集体会以51:49的过半数优势获胜。此后,我们不妨假设猎物的95%被51人集团平均分享,那么剩下的49人分到的猎物自然很少。
这个猎人当然不会就此满足,他仍然会采用同样的方式来左右投票表决。于是他又组成了26人的小集团,重新分配这90%的猎物。接着不妨假设26人集团分到了85%的猎物。如果那被排挤的25人中胆敢有人表示不满,这个富有谋略的猎人就可以威胁冒犯者:如果不满意就通过投票让他得到的猎物更少(当然也是投票操纵,26人集团当然是支持,而被排挤的剩下的24人被告知说他们可以投票分享这个冒犯者的应得猎物,自然他们也会持支持态度)。
在这种情况下,那25个人都将屈服于这种分配方案,结果猎物的绝大部分就被这26人的联盟分享。以此类推,26人转化为14人……最终的结果就变成极少数人甚至是这个领导者占有猎物的绝大部分。
此时,这个领导者可以把手中的猎物当成诱饵来招募武士保卫其特权和地位,拥有这样的特权以后,领导者还可以分得更多的猎物,有了更多的猎物就可以招募更多的武士来维护自己的特权。
民主中“少数服从多数”的原则最终变成了一个人的大多数,众人追求的民主最终却选出了独裁者。这似乎是天大的讽刺,然而的确是事实。如果投票中的所有人都是理性人,那么私下协商的存在必然会导致这样的结果。
困扰NBA的高薪难题
高水平的职业联赛都需要用优秀的运动员来吸引观众,所以尽管全球经济低迷,但NBA球员们的平均年薪依旧能够达到惊人的530万美元。而在2010年4月3日与湖人续约三年的科比·布莱恩特,今后三年的薪水总额更是高达令人咋舌的8400万美元。
很多人认为,职业联赛的本质就是用高薪吸引最优秀的运动员。需要进一步讨论的问题是,当能够以适当的理由给一位运动员支付10万美元的年薪时,是否意味着没有适当的理由给他一个年薪数百万美元的合同?比如,NBA历史上最伟大的球员迈克尔·乔丹,篮球技术登峰造极,但在1993年第一次退役之后打棒球期间,他并未取得如何令人印象深刻的成就。他的篮球专业技术并不能转换成打棒球的技术,或者其他运动的职业技术。
这样看来,虽然球队必须用高薪才能吸引某位特定的球员,但让同一个人成为职业运动员所需的工资并不是太高。如果所有球队提供的薪水都很低,同样也能吸引最优秀的队员,因为这些队员除了打本专业外不会做其他事。
每支球队在他们的球员的薪水方面都面临着类似的困境。如果其他球队提供的薪水都非常低,你的球队支付高薪水就能够获得很大的收益,你会得到最优秀的球员,赢得所有联赛冠军,而且总有买票支持你们球队的观众。如果其他球队都提供高薪水,你还是必须提供高薪水,否则,你的队员就可能是最差的,这样你们队的票房收入就会很低。因此,给球员提供高薪水是每个球队的优势策略。对球队来说,不幸的是,它们全部支付高薪水会使它们比只支付低薪水时情况更糟。
职业联赛委员会明白自身所面对的困境,并且试图限制运动员的薪水。比如NBA联盟,各俱乐部已经在执行薪水上限,以限制一个球队所支付薪水的总量,但这并未能阻止一些财大气粗的球队一掷千金。比如,2011年6月刚夺得球队历史上首个总冠军的达拉斯小牛队的老板马克·库班,就是一位疯狂的球迷兼老板。为了打造豪华之师,他不惜向联盟缴纳巨额奢侈税。而且对于球员来说,他们会从其球队所处的薪水困境中受益,因此球员工会也反对设定薪水上限。
非合作的选择
四位男士正坐在吧台前喝酒聊天,这时,走进来四位美女和一位绝色美人。四位男士目不转睛地盯着她们,随后,其中一个叫纳什的男士便跟他另外三个同学解释,他们该怎样去追求这些女生。纳什说,在正常情况下,四位男士会同时对这个绝色美人展开攻势。但纳什认为,采取这种策略并不聪明,因为如果所有的男士都追求那位绝色美人,他们就会互相牵制,到头来没有一个人能如愿以偿。
而如果四位男士被这个绝色美女拒绝后再去找那些姿色稍逊的美女,她们就会因为自己成为别人的第二选择而恼羞成怒,于是也会把这些男士一脚踢开。因此,纳什提议说,为了避免两头落空,他们四人应该一起冷落绝色美女,转而去追求那些姿色稍逊一些的美女。
这是奥斯卡获奖影片《美丽心灵》中的一个情节,那位叫纳什的男士即是该片的主人公,他的同名原型是普林斯顿大学的约翰·纳什教授——1994年的诺贝尔经济学奖得主。
纳什是普林斯顿的数学天才,1950年,他将自己的研究成果写成题为《非合作博弈》的长篇博士论文。该论文在美国全国科学院每月公报上一经刊登,立即引起轰动。在这篇论文中,纳什提出了后来为其带来巨大声誉的“非合作博弈均衡的概念”,即后来众所周知的“纳什均衡”。