§2.3 齐次线性方程组
§1.4曾讨论过n个方程n个未知量的齐次线性方程组,本节讨论一般s个方程n个未知量的齐次线性方程组.
导学提纲
1.一般齐次线性方程组在什么条件下有非零解?在什么条件下只有零解?
2.为什么“方程个数少于未知量个数的齐次线性方程组必有非零解”?
3.方程个数等于未知量个数的齐次线性方程组有非零解的充分必要条件是什么?
常数项全为零的线性方程组
称为齐次线性方程组.齐次线性方程组恒有解x1=0, x2=0, …, xn=0,称为零解或平凡解,如果还有其他解x1=c1, x2=c2, …, xn=cn,即c1, c2, …, cn不全为零,称为非零解.
因为恒有
所以齐次线性方程组(1)恒有解,由定理2.2.2得
定理2.3.1 设n元齐次线性方程组(1)的系数矩阵秩数为r,则
(1)当r=n时,齐次线性方程组(1)只有零解;
(2)当r<n时,齐次线性方程组(1)有非零解,解中有n-r个自由未知量.
s行n列矩阵秩数r满足0≤r≤m in(s, n),当s<n时,必有r<n.因此有
定理2.3.2 方程个数少于未知量个数的齐次线性方程组必有非零解.
定理2.3.3 n个方程n个未知量的齐次线性方程组
有非零解的充分必要条件是其系数行列式
证 定理的必要性就是推论1.4.1的逆否命题,以下证明充分性.
因为(2)的系数行列式等于零,所以系数矩阵秩数r<n,据定理2.3.1,齐次线性方程组(2)有非零解.
解齐次线性方程组也用分离系数消元法,不过因为它的常数项全为零,所以只需对它的系数矩阵施行初等行变换.
例2.3.1 解齐次线性方程组
解
从最后一个增广矩阵看出系数矩阵秩数4等于未知量个数4,所以齐次线性方程组只有零解.
例2.3.2 解齐次线性方程组
解 因为这个齐次线性方程组的方程个数4小于未知量个数5,必有非零解.故可以将增广矩阵直接化成约化阶梯形.
从最后一个矩阵看出,系数矩阵秩数4小于未知量个数5,有非零解,解中有5-4=1个自由未知量,令x3=c,得全部解
其中c为任意数.
例2.3.3 讨论λ为何值时,齐次线性方程组
有非零解?并求出全部解.
分析 因为这个齐次线性方程组的方程个数等于未知量个数,所以系数行列式等于零时有非零解,故令系数行列式等于零,解方程求λ值.
解
当λ=4或λ=1时,齐次线性方程组有非零解.
当λ=4时,原方程组为
全部解为(c, c, c),其中c为任意数.
当λ=1时,原方程组为
全部解为(-c1-c2, c1, c2),其中c1, c2为任意数.
习题2.3
1.判断下列齐次线性方程组是否有非零解?为什么?
2.解下列齐次线性方程组:
3.λ为何值时,齐次线性方程组
有非零解?并求出全部解.