参考文献
[1] PEJSA T, PANDZIC I S. State of the art in example-based motion synthesis for virtual characters in interactive applications[J]. Computer Graphics Forum, 2010, 29(1):202-226.
[2] WANG X, CHEN Q D, WANG W L. 3D human motion editing and synthesis: a survey[J]. Computational and Mathematical Methods in Medicine, 2014, 2014(1):104535.
[3] 潘志庚, 吕培, 徐明亮, 等. 低维人体运动数据驱动的角色动画生成方法综述[J].计算机辅助设计与图形学学报, 2013, 25(12): 1-11.
[4] 肖俊, 庄越挺, 吴飞. 计算机视觉与机器学习技术在三维人体动画中的应用综述[J]. 计算机辅助设计与图形学学报, 2008, 20(3): 281-290.
[5] 夏时洪, 魏毅, 王兆其. 人体运动仿真综述[J]. 计算机研究与发展, 2010, 47(8):1354-1361.
[6] ZHANG J H, OWEN C B. Octree-based animated geometry compression[C]//IEEE Data Compression Conference. Los Alamitos: IEEE Computer Society Press, 2004:508-517.
[7] SATTLER M, SARLETTE R, KLEIN R. Simple and efficient compression of animation sequences[C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2005: 209-217.
[8] SLOAN P P, HALL J, HART J, et al. Clustered principal components for precomputed radiance transfer[J]. ACM Transactions on Graphics, 2003, 22(3): 382-391.
[9] GUSKOV I, KHODAKOVSKY A. Wavelet compression of parametrically coherent mesh sequences[C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2004: 183-192.
[10] YANG J H, KIM C S, LEE S U. Compression of 3D triangle mesh sequences based on vertex-wise motion vector prediction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2002, 12(12): 1178-1184.
[11] IBARRIA L, ROSSIGNAC J. Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity[C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2003: 126-135.
[12] BRICEÑO H M, SANDER P V, MCMILLAN L, et al. Geometry videos: a new representation for 3D animations[C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2003: 136-146.
[13] ARIKAN O. Compressions of motion capture databases[J]. ACM Transactions on Graphics, 2006, 25(3): 890-897.
[14] GU Q, PENG J L, DENG Z G. Compressions of human motion capture data using motion pattern indexing[J]. Computer Graphics Forum, 2009, 28(1): 1-12.
[15] LIU G D, MCMILLAN L. Segment-based human motion compression[C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville:Eurographics Association Press, 2006: 127-135.
[16] TOURNIER M, WU X, COURTY N, et al. Motion compression using principal geodesic analysis[J]. Computer Graphics Forum, 2009, 28(2): 355-364.
[17] BEAUDOIN P, POULIN P, PANNE M V D. Adapting wavelet compression to human motion capture clips[C]//Graphics Interface. Aire-la-Ville: Eurographics Association Press, 2007: 313-318.
[18] PREDA M, PRETEUX F. MPEG-4 human virtual body animation [M]. MPEG-4 Jump-Start. Bergen: Prentice Hall PTR Press, 2002: 321-368.
[19] ZHU M Y, SUN H J, DENG Z G. Quaternion space sparse decomposition for motion compression and retrieval [C]//The ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Aire-la-Ville: Eurographics Association Press, 2012: 183-192.
[20] CHATTOPADHYAY S, BHANDARKAR S M, LI K. Human motion capture data compression by model-based indexing: a power aware approach[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(1): 5-14.
[21] LIN Y, MCCOOL M D. Nonuniform segment-based compression of motion capture data[M]. Lecture Notes in Computer Science. Heidelberg: Springer, 2007, 4841:56-65.
[22] BARBIC J, SAFONOVA A, PAN J Y, et al. Segmenting motion capture data into distinct behaviors[C]//Graphics Interface. Aire-la-Ville: Eurographics Association Press, 2004: 185-194.
[23] FOWLKES C, BELONGIE S, CHUNG F, et al. Spectral grouping using the Nystrom method[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2): 214-225.
[24] LIN I C, PENG J Y, LIN C C, et al. Adaptive motion data representation with repeated motion analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2011,17(4): 527-538.
[25] ZHOU K, TIAN F, GUO H, et al. A clustering compression method for 3D Human motion capture data[C]//The 9th International Conference on Computer Science &Education. Los Alamitos: IEEE Computer Society Press, 2014: 781-784.
[26] BULUT E, CAPIN T. Key frame extraction from motion capture data by curve saliency[C]//The International Conference on Computer Animation and Social Agents.Los Alamitos: IEEE Computer Society Press, 2007: 63-67.
[27] VÁŠA L, BRUNNETT G. Rate-distortion optimized compression of motion capture data[J]. Computer Graphics Forum, 2014, 33 (2): 283-292.
[28] LEE C H, LASENBY J. An efficient wavelet-based framework for articulated human motion compression[M]. Lecture Notes in Computer Science. Heidelberg: Springer,2008, 5358: 75-86.
[29] LI S Y, OKUDA M, TAKAHASHI S I. Compression of human motion animation using the reduction of interjoint correlation[J]. EURASIP Journal on Image and Video Processing, 2008, 2008(1): 693427.
[30] FIROUZMANESH A, CHENG I, BASU A. Perceptually guided fast compression of 3-D motion capture data[J]. IEEE Transactions on Multimedia, 2011, 13(4): 829-834.
[31] KWAK C H, BAJIĆ I V. Hybrid low-delay compression of motion capture data[C]//IEEE International Conference on Multimedia and Expo. Los Alamitos: IEEE Computer Society Press, 2011: 1-6.
[32] KHAN M A. An efficient algorithm for compression of motion capture signal using multidimensional quadratic Bézier curve break-and-fit method[J]. Multidimensional Systems and Signal Processing, 2014, 27(1): 1-23.
[33] HAN Y M. Computer animation in mobile phones using a motion capture database compressed by polynomial curve-fitting techniques[J]. IEEE Transactions on Consumer Electronics, 2008, 54 (3): 1008-1016.
[34] WANG P J, PAN Z G, ZHANG M M, et al. The alpha parallelogram predictor: a lossless compression method for motion capture data[J]. Information Science, 2013,232: 1-10.
[35] KUO M C, CHIANG P Y, KUO C C J. Coding of motion capture data via temporal-domain sampling and spatial-domain vector quantization techniques[M].Lecture Notes in Computer Science. Heidelberg: Springer, 2010: 84-99.
[36] CHEW B S, CHAU L P, YAP K H. A fuzzy clustering algorithm for virtual character animation representation[J]. IEEE Transactions on Multimedia, 2011, 13 (1): 40-49.
[37] SAYOOD K. Introduction to data compression[M]. San Francisco: Morgan Kaufmann Publishers, 2005.
[38] HOU J H, CHAU L P, MAGNENAT T N, et al. Scalable and compact representation for motion capture data using tensor decomposition[J]. IEEE Signal Processing Letters,2014, 21(3): 255-259.
[39] KRUGER B, TAUTGES J, WEBER A. Multi-mode representation of motion data[C]//The 2nd International Conference on Computer Graphics Theory and Applications. Barcelona: INSTICC Press, 2007: 21-29.
[40] HOU J H, CHAU L P, HE Y, et al. Low-rank based compact representation of motion capture data[C]//IEEE International Conference on Image Processing. Los Alamitos:IEEE Computer Society Press, 2014: 1480-1484.
[41] KUO M C, CHIANG P Y, LEE J, et al. On-line lossless mocap data compression[C]//IEEE International Symposium on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2009: 1457-1460.
[42] ISENBURG M, ALLIEZ P. Compressing polygon mesh geometry with parallelogram prediction[C]//IEEE Visualization. Los Alamitos: IEEE Computer Society Press, 2002:141-146.
[43] CHEW B S, CHAU L P, YAP K H. Progressive transmission of motion capture data for scalable virtual character animation[C]//IEEE International Symposium on Circuits and Systems. Los Alamitos: IEEE Computer Society Press, 2009: 1461-1464.
[44] LI W P. Overview of fine granularity scalability in MPEG-4 video standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(3): 301-317.
[45] LEE C H, LASENBY J. 3D human motion compression using wavelet decomposition[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2006: 104.
[46] LEE C H, LASENBY J. A compact representation for articulated human motion[C]//Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 2007: 96.
[47] HE Y, CHEW B S, WANG D Y, et al. Streaming 3D meshes using spectral geometry images[C]//The 17th ACM International Conference on Multimedia. New York: ACM Press, 2009: 431-440.
[48] 朱登明, 王兆其. 基于运动序列分割的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报, 2008, 20(6): 787-792.
[49] LIM I S, THALMANN D. Key-posture extraction out of human motion data by curve simplification[C]//The 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Los Alamitos: IEEE Computer Society Press, 2001,2: 1167-1169.
[50] 杨涛, 肖俊, 吴飞, 等. 基于分层曲线简化的运动捕获数据关键帧提取[J]. 计算机辅助设计与图形学学报, 2006, 18(11): 1691-1697.
[51] WANG P J, ZHANG M M, SONG H Y, et al. Key frame extraction from motion capture data based on GPU[J]. ICIC Express Letters, Part B: Applications, 2011, 2(1):209-214.
[52] 沈军行, 孙守迁, 潘云鹤. 从运动捕获数据中提取关键帧[J]. 计算机辅助设计与图形学学报, 2004, 16(5): 719-723.
[53] MATSUDA K, KONDO K. Keyframe extraction method for motion capture data[J].Journal for Geometry and Graphics, 2004, 8(1): 81-90.
[54] 刘云根, 刘金刚. 重建误差最优化的运动捕获数据关键帧提取[J]. 计算机辅助设计与图形学学报, 2010, 22(4): 670-675.
[55] 蔡美玲, 邹北骥, 辛国江. 预选策略和重建误差优化的运动捕获数据关键帧提取[J]. 计算机辅助设计与图形学学报, 2012, 24(11): 1485-1492.
[56] LIU X M, HAO A M, ZHAO D. Optimization-based key frame extraction for motion capture animation[J]. The Visual Computer, 2013, 29(1): 85-95.
[57] ZHANG Q, ZHANG S L, ZHOU D S. Keyframe extraction from human motion capture data based on a multiple population genetic algorithm[J]. Symmetry, 2014,6(4), 926-937.
[58] LEE C H, VARSHNEY A, JACOB D W. Mesh saliency[J]. ACM Transactions on Graphics, 2005, 24(3): 659-666.
[59] KOVAR L, GLEICHER M. Automated extraction and parameterization of motions in large data sets[J]. ACM Transactions on Graphics, 2004, 23(3):559-568.
[60] WANG P J, LAU R W H, PAN Z G, et al. An eigen-based motion retrieval method for real-time animation[J]. Computer & Graphics, 2014, 38(2): 255-267.
[61] WANG P J, LAU R W H, ZHANG M M, et al. A real-time database architecture for motion capture data[C]//The 19th International Conference on ACM Multimedia. New York: ACM Press, 2011: 1337-1340.
[62] RATANAWORABHAN P, KE J, BURTSCHER M. Fast lossless compression of scientific floating-point data[C]//Data Compression Conference. Los Alamitos: IEEE Computer Society Press, 2006: 133-142.
[63] LINDSTROM P, ISENBURG M. Fast and efficient compression of floating-point data[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5):1245-1250.
[64] BURTSCHER M, RATANAWORABHAN P. High throughput compression of double-precision floating-point data[C]//Data Compression Conference. Los Alamitos:IEEE Computer Society Press, 2007: 293–302.
[65] BURTSCHER M, RATANAWORABHAN P. FPC: a high-speed compressor for double-precision floating-point data[J]. IEEE Transactions on Computers, 2009, 58(1):18-31.