第21章 宏观经济学的微观基础
1.随机行走(北京师范大学2004研)
答:随机行走指当影响消费的一种变量的变动是不可预测的时,消费随着时间的推移发生的变动是不可预测的。它是经济学家罗伯特·霍尔提出的。根据霍尔的观点,持久收入假说与理性预期的结合意味着消费遵循随机行走。霍尔的推理如下:根据持久收入假说,消费者面临波动的收入,并尽最大努力使自己的消费在时间上保持稳定。在任何一个时点上,消费者根据现在对一生收入的预期选择消费。随着时间的推移,他们改变自己的消费是因为他们得到了使他们修正其预期的消息。如果消费者最优地利用所有可获得的信息,那么,他们应该只对那些完全未预期到的事件感到意外。因此,他们消费的变动也应该是无法预期的。
2.鲍莫尔—托宾模型(外交学院2008研)
答:鲍莫尔—托宾模型是对凯恩斯货币交易需求理论的发展。它分析了持有货币的成本与收益,持有货币的收益是方便,成本是放弃利息。它描述了个人对货币资产的需求,正向地取决于支出而反向地取决于利率。它还表明,去银行的固定成本的任何变动都会改变货币需求函数,即它改变了任何给定利率和收入上的货币需求量。
1.按照资产组合理论,货币政策影响经济的机制是什么?(西北大学2008研)
答:资产组合理论是指通过对不同资产进行组合,在追求最大收益或预期收益的同时,借助于非系统风险的消除以降低投资风险的理论。资产组合理论是强调货币作为价值储藏手段的货币需求理论。
按照资产组合理论,货币政策影响经济的机制是:
货币供给增加→利率下降→股票价格上升→企业更多投资
即采用扩张性的货币政策(如买进政府债券,降低存款准备金率和再贴现率等),使得货币供给增加,当货币需求一定时,利率上升。由于股票价格与利率成反比,利率下降意味着股票价格上升,企业的预期收益增加,因而企业会增加更多的投资。
2.住宅存量的供需与新住宅供给之间有什么关系?(上海理工大学2007研)
答:住宅存量的需求受住房本身价格、人们的财富、拥有住宅的真实净收益和其他资产的真实净收益等因素影响。住宅需求曲线如图21-1(a)所示,纵轴代表住宅相对价格,横轴代表住宅资本存量。除了住宅价格以外的其他三个因素都会导致住宅需求曲线的移动。例如,人们财富增加,需求会增加,会右移到。相反,其他资产的真实净收益增加,这使住宅的相对收益下降,住宅需求曲线就会左移。在一定时点上,住宅供给量是固定的,如图21-1(a)的垂直线。这是因为住宅建筑需要较长时间,其供给对价格变动不能作出迅速反应。这样,住宅存量的需求曲线和供给曲线相交,就决定了住宅的均衡价格。
图21-1 住宅市场
再来看住宅的流量供给,如图21-1(b)所示,纵轴仍代表住宅相对价格,横轴代表住宅供给流量。就是供给曲线,说明了在每个价格水平上愿意提供的住宅量,这是流量。由图21-1(a)决定了住宅相对价格
,再根据图21-1(b),在价格下,提供新住宅为。
从时间序列上看,由于每年有住宅流量进入住宅存量,同时,住宅中也有部分旧房因年久而报废,退出住宅存量,故住宅供给曲线会随时间推移而不断左右移动。当新造的住宅数量大于报废的旧住宅量时,住宅供给曲线会右移,反之则会左移。
3.简述鲍莫尔—托宾的交易性货币需求模型。(对外经济贸易大学2007研)
答:20实际50年代,经济学家威廉·鲍莫尔和詹姆斯·托宾分别发展了相似的理论模型,证明交易性货币需求同样受到利率影响。他们的模型被合称为鲍莫尔—托宾模型。
鲍莫尔—托宾模型认为人们持有货币犹如持有存货,一方面随收入增加,需要有更多的货币从事交易;另一方面,随着利率的提高,持有货币的成本(放弃的利息收入)就上升,因此,货币的交易需求量会随收入增加而增加,随利率上升而减少。货币需求的存货理论把人们最优的货币持有量用一个称之为货币需求的平方根公式表示:
式中,为现金和债券之间的交易(转换)成本;为人们月初取得的收入;为利率。
由此可见,鲍莫尔—托宾模型补充和完善了凯恩斯的交易需求理论。该模型认为,即使是交易性货币需求,也会对利率的变化作出敏感反应,而且相对于交易数值而言,货币的交易性需求也呈现出规模经济的性质。
1.考虑一个两时期的模型,假设生产函数是,第一时期的资本存量,名义利率是13%,预期通货膨胀率是3%。求:
(1)如果资本不折旧,第二时期的最优投资是多少?
(2)如果资本每年折11%,第二时期的最优投资是多少?(辽宁大学2009研)
解:(1)企业意愿资本存量取决于资本边际收益和资本边际成本的均衡点。第二时期资本的边际收益可以由生产函数得到:
第二时期资本的边际成本=名义利率-通货膨胀率=13%-3%=10%。
因此,第二时期的企业意愿资本存量可以求解下式得到:
解得:。
于是当折旧率时,第二时期最优投资为:
即如果资本不折旧,第二时期的最优投资为零。
(2)如果资本每年折11%,则第二时期资本的边际成本=名义利率-通货膨胀率+折旧率=13%-3%+11%=21%。
因此,第二时期的企业意愿资本存量可以求解下式得到:
解得:。
于是当折旧率时,第二时期最优投资为:
2.假设投资需求函数为,其中为意愿资本存量,,为产出、为利率。假设没有折旧。
(1)当第一年产出为2000元,利率为0.05时,求意愿资本存量;
(2)当在第0年时的资本存量为200元时,求第一年的投资水平;
(3)假设产出和利率为常数,则第二、第三年以及以后各年的投资为多少?(西安电子科技大学2007研)
解:(1)直接利用公式,有:
(元)
(2)根据投资需求函数可知,由实际资本向意愿资本水平的调整是逐步进行的。直接利用公式,有:
(元)
(3)当产出和利率为常数时,意愿资本存量不变(即为400元)。根据(2)部分计算可得,第一年的资本存量为200+40=240(元),则第二年的投资为:
(元)
因此,第二年的资本存量为240+32=272(元),则第三年的投资为:
(元)
可以计算得出,在以后各年中,投资量每年将递减,直至为零。此时,实际资本达到意愿资本水平。