前言
随着工业发展和城市化进程,世界范围内的大气污染越来越严重。大气污染物质中,除颗粒性污染物(烟尘、粉尘、总悬浮颗粒)外,气态污染物(CO2、SO2、NOx和烃类化合物)是主要污染成分。挥发性有机物(VOCs)作为碳化合物污染之一,给生态环境和人体健康(致畸、致癌等)带来了严重危害,对全球经济发展乃至人类的生存带来了严峻的挑战。有机废气净化技术的选择取决于多项参数,如污染物种类、浓度、气体流速、法规标准。若回用成本低于采购原料挥发性有机物成本,在这种情况下,非破坏性方法是较好的选择,如冷凝、膜分离、吸收、吸附等。若挥发性有机物无明显回用价值,或在挥发性有机物与有毒化合物混合的情况下,需选用销毁方法,如热氧化、催化氧化、生物过滤法、光催化和低温等离子体等。
低温等离子体是一种可以减少挥发性有机物排放和其他工业废气的新兴技术,已经在大范围的排放物处理中得到有效应用,包括脂肪族烃、氯氟烃、甲基腈、碳酰氯、甲醛、硫和有机磷化合物、硫和氮氧化物,这样的等离子体可以通过各种放电(辉光放电、电晕放电、介质阻挡放电、射频放电、滑动弧放电等)产生。气体放电产生等离子体,其中主要的电能(大于99%)用于产生高能电子,而不是加热全部的气流。这些高能电子通过载气分子的电子轰击分裂、激发、电离产生激发粒子、自由基、离子和额外的电子。这些活性粒子则可氧化、还原或分解污染物分子,并不需要加热全部气流来破坏污染物。另外,低温等离子体技术具有高选择性和相对低的维护要求,高选择性使其在排放控制时有相对低的能耗,而低的维护要求减少了每年的维护费。
本书对放电等离子体发生的基本原理和机理、发生器类型、物理化学特征到有机物降解机理与副产物风险、工程案例均做了详细论述。
编著者一直致力于环境等离子体技术的研发工作,积累了大量公开发表和未发表的等离子体技术资料和丰富的工程实践经验。现将等离子体处理有机废气的原理与技术前沿成果汇总,供与读者参考,希望有更多的研究者关注环境等离子体技术。
感谢国家自然科学基金(50908237)、广东省科技计划项目(2015A020215013)、广州市科技计划项目(201709010070)和中山大学本科教学改革与教学质量工程项目“重点教材建设”项目的研究资助;同时感谢给予帮助和鼓励的老师、同事和同行。另外,还要感谢课题组研究生所付出的辛勤劳动。
限于编著者水平,不妥与疏漏之处在所难免,恳请读者及同行谅解和帮助指正。
杜长明
2017年6月