参考文献
1.CAMERON D,JONES IG.John Snow,the Broad Street Pump and Modern Epidemiology.Int.J.Epidemiol.1983;12:393-396.
2.Stolberg HO,Norman G,Trop I.Randomized controlled trials.AJR.Am.J.Roentgenol. 2004;183:1539-44.
3.DOLL R,HILL AB.Smoking and carcinoma of the lung;preliminary report.Br.Med.J. 1950;2:739-48.
4.Doll R,Hill AB.The Mortality of Doctors in Relation to Their Smoking Habits.BMJ.1954;1:1451-1455.
5.DAWBER TR,KANNEL WB.Computers in epidemiologic research.Uses in the Framingham study.Circ.Res.1962;11:587-9.
6.KANNEL WB,DAWBER TR,KAGAN A,REVOTSKIE N,STOKES J.Factors of risk in the development of coronary heart disease--six year follow-up experience.The Framingham Study.Ann.Intern.Med.1961;55:33-50.
7.Wilson PW,D'Agostino RB,Levy D,Belanger AM,Silbershatz H,Kannel WB.Prediction of coronary heart disease using risk factor categories.Circulation.1998;97:1837-47.
8.Belanger CF,Hennekens CH,Rosner B,Speizer FE.The nurses'health study.Am.J.Nurs. 1978;78:1039-40.
9.Riboli E,Hunt KJ,Slimani N,Ferrari P,Norat T,Fahey M,Charrondière UR,Hémon B,Casagrande C,Vignat J,Overvad K,Tjønneland A,Clavel-Chapelon F,Thiébaut A,Wahrendorf J,Boeing H,Trichopoulos D,Trichopoulou A,Vineis P,Palli D,Bueno-De-Mesquita HB,Peeters PHM,Lund E,Engeset D,González CA,Barricarte A,Berglund G,Hallmans G,Day NE,Key TJ,Kaaks R,Saracci R.European Prospective Investigation into Cancer and Nutrition(EPIC):study populations and data collection.PublicHealthNutr.2002;5:1113-24.
10.P3 G.Study Catalogue Statistics[Internet].P3 G Obs.-Stat.2014;
11.Manolio TA,Bailey-Wilson JE,Collins FS.Genes,environment and the value of prospective cohort studies.Nat.Rev.Genet.2006;7:812-20.
12.Hunter DJ.Gene-environment interactions in human diseases.Nat.Rev.Genet.2005;6:287-98.
13.Collins FS.The case for a US prospective cohort study of genes and environment.Nature.2004;429:475-7.
14.Gauderman WJ.Sample size requirements for matched case-control studies of gene-environment interaction.Stat.Med.2002;21:35-50.
15.Hildebrandt M.Slaves to Big Data.Or Are We?[Internet].IDP.Rev.INTERNET,DERECHO Y POLÍTICA 16.2013;
16.Mayer-Schönberger V,Cukier K.Big Data:A Revolution that Will Transform how We Live,Work,and Think[Internet].Houghton Mifflin Harcourt;2013.
17.Cook S,Conrad C,Fowlkes AL,Mohebbi MH.Assessing Google flu trends performance in the United States during the 2009influenza virus A(H1N1)pandemic.PLoSOne.2011;6:e23610.
18.Butler D.When Google got flu wrong.Nature.2013;494:155-6.
19.Data B,Zhou M,States U,Grimmer J,King G,Science QS.The Age of Big Data.New York Times.2012;:1-5.
20.Lynch C.Big data:How do your data grow?Nature.2008;455:28-9.
21.Wild CP,Scalbert A,Herceg Z.Measuring the exposome:apowerful basis for evaluating environmental exposures and cancer risk.Environ.Mol.Mutagen.2013;54:480-99.
22.White E,Hunt JR,Casso D.Exposure measurement in cohort studies:the challenges of prospective data collection.Epidemiol.Rev.1998;20:43-56.
23.Kondo N.Socioeconomic disparities and health:impacts and pathways.J.Epidemiol. 2012;22:2-6.
24.Mahabir S.Association between diet during preadolescence and adolescence and risk for breast cancer during adulthood.J.Adolesc.Health.2013;52:S30-5.
25.Boffetta P,Fryzek JP,Mandel JS.Occupational exposure to beryllium and cancer risk:a review of the epidemiologic evidence.Crit.Rev.Toxicol.2012;42:107-18.
26.Boffetta P.A review of cancer risk in the trucking industry,with emphasis on exposure to diesel exhaust.G.Ital.Med.Lav.Ergon.34:365-70.
27.Nicholson JK,Wilson ID,Lindon JC.Pharmacometabonomics as an effector for personalized medicine.Pharmacogenomics.2011;12:103-11.
28.Evrard A,Mbatchi L.Genetic polymorphisms of drug metabolizing enzymes and transporters:the long way from bench to bedside.Curr.Top.Med.Chem.2012;12:1720-9.
29.Arakawa K,Tomita M.Merging multiple omics datasets in silico:statistical analyses and data interpretation.Methods Mol.Biol.2013;985:459-70.
30.Forrest MS,Lan Q,Hubbard AE,Zhang L,Vermeulen R,Zhao X,Li G,Wu Y-Y,Shen M,Yin S,Chanock SJ,Rothman N,Smith MT.Discovery of novel biomarkers by microarray analysis of peripheral blood mononuclear cell gene expression in benzene-exposed workers.Environ.Health Perspect.2005;113:801-7.
31.Fry RC,Navasumrit P,Valiathan C,Svensson JP,Hogan BJ,Luo M,Bhattacharya S,Kandjanapa K,Soontararuks S,Nookabkaew S,Mahidol C,Ruchirawat M,Samson LD.Activation of inflammation/NF-kappaB signaling in infants born to arsenic-exposed mothers.PLoS Genet.2007;3:e207.
32.Spira A,Beane J,Shah V,Liu G,Schembri F,Yang X,Palma J,Brody JS.Effects of cigarette smoke on the human airway epithelial cell transcriptome.Proc.Natl.Acad.Sci.U.S.A. 2004;101:10143-8.
33.Wan ES,Qiu W,Baccarelli A,Carey VJ,Bacherman H,Rennard SI,Agusti A,Anderson W,Lomas DA,Demeo DL.Cigarette smoking behaviors and time since quitting are associated with differential DNA methylation across the human genome.Hum.Mol.Genet. 2012;21:3073-82.
34.Joubert BR,Håberg SE,Nilsen RM,Wang X,Vollset SE,Murphy SK,Huang Z,Hoyo C,MidttunØ,Cupul-Uicab LA,Ueland PM,Wu MC,Nystad W,Bell DA,Peddada SD,London SJ.450Kepigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy.Environ.Health Perspect.2012;120:1425-31.
35.Van Dorsten FA,Daykin CA,Mulder TPJ,Van Duynhoven JPM.Metabonomics approach to determine metabolic differences between green tea and black tea consumption.J.Agric.FoodChem.2006;54:6929-38.
36.Llorach R,Urpi-Sarda M,Jauregui O,Monagas M,Andres-Lacueva C.An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption.J.Proteome Res.2009;8:5060-8.
37.Würtz P,Mäkinen V-P,Soininen P,Kangas AJ,Tukiainen T,Kettunen J,Savolainen MJ,Tammelin T,Viikari JS,Rönnemaa T,Kähönen M,Lehtimäki T,Ripatti S,Raitakari OT,Järvelin M-R,Ala-Korpela M.Metabolic signatures of insulin resistance in 7,098young adults.Diabetes.2012;61:1372-80.
38.Wang K-C,Kuo C-H,Tian T-F,Tsai M-H,Chiung Y-M,Hsiech C-M,Tsai S-J,Wang S-Y,Tsai D-M,Huang C-C,Tseng YJ.Metabolomic characterization of laborers exposed to welding fumes.Chem.Res.Toxicol.2012;25:676-86.
39.Pleil JD,Stiegel MA,Sobus JR.Breath biomarkers in environmental health science:exploring patterns in the human exposome.J.Breath Res.2011;5:046005.
40.Wang-Sattler R,Yu Y,Mittelstrass K,Lattka E,Altmaier E,Gieger C,Ladwig KH,Dahmen N,Weinberger KM,Hao P,Liu L,Li Y,Wichmann H-E,Adamski J,Suhre K,Illig T.Metabolic profiling reveals distinct variations linked to nicotine consumption in humans--first results from the KORA study.PLoS One.2008;3:e3863.
41.Pechlivanis A,Kostidis S,Saraslanidis P,Petridou A,Tsalis G,Mougios V,Gika HG,Mikros E,Theodoridis GA.(1)H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine. J.Proteome Res.2010;9:6405-16.
42.Lehmann R,Zhao X,Weigert C,Simon P,Fehrenbach E,Fritsche J,Machann J,Schick F,Wang J,Hoene M,Schleicher ED,Häring H-U,Xu G,Niess AM.Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation.PLoS One.2010;5:e11519.
43.Oberbach A,Blüher M,Wirth H,Till H,Kovacs P,Kullnick Y,Schlichting N,Tomm JM,Rolle-Kampczyk U,Murugaiyan J,Binder H,Dietrich A,von Bergen M.Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes.J.ProteomeRes.2011;10:4769-88.
44.Keun HC,Sidhu J,Pchejetski D,Lewis JS,Marconell H,Patterson M,Bloom SR,Amber V,Coombes RC,Stebbing J.Serum molecular signatures of weight change during early breast cancer chemotherapy.Clin.Cancer Res.2009;15:6716-23.
45.Huffman KM,Shah SH,Stevens RD,Bain JR,Muehlbauer M,Slentz CA,Tanner CJ,Kuchibhatla M,Houmard JA,Newgard CB,Kraus WE.Relationships between circulating metabolic intermediates and insulin action in overweight to obese,inactive men and women.Diabetes Care.2009;32:1678-83.
46.Wild CP.Complementing the genome with an“exposome”:the outstanding challenge of environmental exposure measurement in molecular epidemiology.Cancer Epidemiol.Biomarkers Prev.2005;14:1847-50.
47.Wild CP.The exposome:from concept to utility.Int.J.Epidemiol.2012;41:24-32.
48.Mayer C-D,Lorent J,Horgan GW.Exploratory analysis of multiple omics datasets using the adjusted RV coefficient.Stat.Appl.Genet.Mol.Biol.2011;10:Article 14.
49.Arbogast PG,Ray WA.Performance of disease risk scores,propensity scores,and traditional multivariable outcome regression in the presence of multiple confounders.Am. J.Epidemiol.2011;174:613-20.
50.Manolio TA,Weis BK,Cowie CC,Hoover RN,Hudson K,Kramer BS,Berg C,Collins R,Ewart W,Gaziano JM,Hirschfeld S,Marcus PM,Masys D,McCarty CA,McLaughlin J,Patel A V,Peakman T,Pedersen NL,Schaefer C,Scott JA,Sprosen T,Walport M,Collins FS.New models for large prospective studies:is there a better way?Am.J.Epidemiol.2012;175:859-66.
51.Gottweis H,Lauss G.Biobank governance:heterogeneous modes of ordering and democratization.J.Community Genet.2012;3:61-72.
52.Watts G.Will UK Biobank pay off?BMJ.2006;332:1052.