15 SIRT3在脓毒症肺损伤中的调节作用研究进展
急性肺损伤是继发于脓毒症的临床高发病率和死亡率的危重症。研究发现,在脓毒症肺损伤中,肺部巨噬细胞、中性粒细胞、树突状细胞大量募集,诱导过度炎症反应,激活多种信号通路,加剧氧化应激,内皮屏障和内皮损伤,导致肺泡通透性增加,肺泡水肿,呼吸衰竭等严重并发症。
Sirtuin-3(silent mat-ing type information regulation 2 homolog 3,SIRT3)是烟酰胺腺嘌呤二核苷酸(NAD +)依赖性的组蛋白去乙酰化酶Sirtuins家族成员之一,调节65%的线粒体赖氨酸乙酰化,影响线粒体能量代谢、底物氧化和细胞凋亡等活动。厚朴酚(HKL)是SIRT3激活剂,有研究表明,HKL介导的SIRT3激活阻止了多柔比星诱导的大鼠新生细胞产生的ROS,促进了线粒体融合,减轻了线粒体损伤和细胞死亡。有实验显示,激活SIRT3可以抑制炎症细胞因子,减轻肺纤维化,清除氧自由基,改善Th1/Th2不平衡,减轻肺损伤。本文就SIRT3调节脓毒症肺损伤机制进行综述。
一、SIRT3基本结构和研究概况
哺乳动物体内sirtuins蛋白分布于整个细胞,其中SIRT1、SIRT6、SIRT7主要定位于细胞核,SIRT2定位于细胞质,SIRT3、SIRT4、SIRT5定位于线粒体。SIRT3含有两个保守的催化核心结构域,包括结合NAD +的大型罗斯曼(Rossmann)折叠域和由一个螺旋束及较大结构域中两个延伸环形成的锌结合基序组成的较小区域。乙酰化肽底物与两个结构域之间的裂缝结合,SIRT3-底物肽复合物与NAD +结合,使SIRT3上氨基酸残基作用于底物肽,发挥脱乙酰基作用。最早发现SIRT3的基质有乙酰辅酶A合酶2(acetyl CoA synthetase 2,AceCS2)和谷氨酸脱氢酶(glutamic dehydrogenase,GLDH),通过SIRT3对线粒体赖氨酸642处的AceCS2的去乙酰化,激活AceCS2活性,将醋酸盐转化到乙酰辅酶A,使乙酰辅酶A在三羧酸循环(TCA)中增强线粒体氧化呼吸作用,保证线粒体能量代谢稳定,减少ROS的生成。
SIRT3主要存在于线粒体,通过去乙酰化线粒体中部分调节代谢酶来调节线粒体功能。已经证实,SIRT3可以特异性调节电子传递链(electron transport chain,ETC)中ROS的产生,调节氧化应激。此外,最近研究强调了SIRT3保护细胞的能力来自氧化损伤,通过增加ROS清除酶活性和稳定线粒体功能来抑制线粒体内ROS的蓄积,暗示SIRT3的重要作用在调节ROS稳态。SIRT3与代谢有关,SIRT3依赖调节氧化磷酸化产生ATP,进一步调节线粒体内的能量稳态。当SIRT3活性被抑制时,ROS可以激活核缺氧诱导因子1a(HIF-1a),糖酵解和血管生成增多。SIRT3通过热量控制(calorie restriction,CR)激活去乙酰化活性,Han等研究发现,SIRT3去乙酰化作用抑制癌症的发展。CR期间,SIRT3表达增加,线粒体赖氨酸乙酰化以组织特异性方式改变,表明SIRT3通过线粒体靶蛋白的去乙酰化调节线粒体功能以应对热量控制中代谢的变化,维持线粒体功能稳定。
二、SIRT3调节脓毒症肺损伤机制
氧化应激在脓毒症急性肺损伤中通过ROS的过量表达发挥关键作用,ROS的产生超过线粒体抗氧化能力是肺损伤的主要机制之一。研究表明,PGC1α(过氧化物酶体增生激活受体γ协同刺激因子1α)给药后,ROS表达和丙二醛(MDA)含量显著降低,同时抗氧化酶如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)的表达升高,表明PGC1α可有效抑制内毒素刺激引起的氧化损伤。Fu等研究发现,SIRT3激活剂白藜芦醇通过促进线粒体内SIRT3富集和随后上调FoxO3a转录因子介导的PGC-1α和SOD2线粒体基因表达,显著降低mROS的产生。有研究证实,SIRT3能够通过上调MAPK/ERK和PI3K/Akt两条增殖信号通路来活化细胞内依赖FoxO3a的抗氧化通路,进而实现对ROS水平的下调。有学者发现,在HK-2细胞中,SIRT3通过调控Akt/FoxO3a信号转导途径来拮抗细胞凋亡,Akt/FoxO3a信号通路已被证实是促进ROS在细胞积累并发生作用的重要传导途径。说明SIRT3可能通过活化FoxO3a/PGC-1α抗氧化通路减轻氧化应激引起的肺损伤,发挥保护作用。
琥珀酰脱氢酶(succinate dehydrogenase,SDH)是存在于TCA循环(三羧酸循环)和电子传递链两条通路中的线粒体内膜结合酶。有报道称,抑制SDH相关的琥珀酸/HIF-1a信号通路,通过对抗脂肪酸氧化,降低琥珀酸积累,可以显著减少ROS的产生,抑制肺部炎症,减轻急性肺损伤。SIRT3可催化SDH的黄素蛋白亚基去乙酰化,实验表明,在小鼠肝脏K562细胞中,SIRT3敲除后,细胞中线粒体的SDH活性较低,相应的未敲除SIRT3组线粒体SDH活性增强,表明SDH在被SIRT3去乙酰化修饰后活性会增强,反之减弱。以上实验说明,通过调节SDH活性,SIRT3能够提高电子传递链中复合体1、2、3的活性,减少ROS从复合体3漏出并提高抗氧化酶的解毒能力,从而减少ROS的产生并提高ATP的生成,从而减轻肺损伤。
此外,SIRT3表达增加可提高锰超氧化物歧化酶(MnSOD)的蛋白质水平,增强MnSOD活性,抑制了肺损伤小鼠肺部的氧化应激,SIRT3的这种调节作用对急性肺损伤有着至关重要的保护作用。
肺部巨噬细胞、肺泡上皮细胞和肺泡内皮细胞凋亡产生炎症因子的积累,是急性肺损伤常见的特征之一。在细胞受到应激后,线粒体对于诱导细胞焦亡起到重要调节作用,正常情况下,促凋亡基因Bax可与Ku70蛋白形成复合体并存在于细胞质中,当机体处于应激状态时,Ku70与Bax分离,转位到线粒体中的Bax释放出线粒体的凋亡相关分子Apaf-1,导致细胞色素c的释放,激活了caspase-9,进而剪切caspase-3的前体形成有活性的caspase-3,最后导致凋亡反应发生。Sundaresan研究发现,SIRT3能够作用于乙酰化的Ku70,促进其与促凋亡基因Bax结合,阻止Bax从胞质进入线粒体从而抑制细胞焦亡。
脓毒症肺损伤时,Ca2+超载、氧自由基(ROS)超负荷会促使线粒体渗透性转移孔(mitochondrial permea-bility transition pore,mPTP)打开,从而引起粒体膜电势迅速丧失,线粒体肿胀、外膜破裂,并释放出细胞色素c、凋亡诱导因子等引起细胞凋亡。SIRT3可使mPTP的亲环蛋白D去乙酰化,阻止亲环蛋白D与腺嘌呤核苷酸转位子结合,抑制m PTP开放,从而减轻脓毒症引起的肺部细胞焦亡。
自噬是真核细胞内降解异常蛋白质以及受损细胞器的一种生理过程,受多条信号通路调控,能够维持基底细胞稳态,并在肺病的发病机制中起关键作用。在临床和动物实验中,肺部感染后,促炎细胞因子(IL-6、IL-1和TNF-α)和转化生长因子β(TGF-β)表达显著增加。体内实验证实,抑制自噬介导的炎性细胞因子表达和肺纤维化可以有效减少肺炎诱导的小鼠肺损伤。
白藜芦醇通过影响Akt-mTORC1、AMPK-SIRT1、SIRT1/SIRT3-FoxO3a以及STAT3信号通路发挥对细胞自噬的调节作用,调控细胞能量代谢,缓解氧化应激损伤。研究显示,SIRT3缺陷的巨噬细胞表现出自噬受损并加速NLRP3炎性体激活和内皮功能障碍。白藜芦醇(RSV)通过抑制自噬失调来消除PM(环境细颗粒物)诱导的氧化损伤,同时RSV也能通过改变Bax/Bcl-2的不平衡和抑制LPS诱导的自噬,减轻脓毒症器官损伤中巨噬细胞凋亡。这些研究说明,Sirt3-FoxO3a信号通路能够减轻内毒素诱导的自噬增加和内皮细胞损伤。
我们前期研究发现,内毒素肺损伤中存在线粒体异常融合-分裂平衡,减少了线粒体融合相关蛋白Mfn1-mRNA和Mfn2-mRNA水平,同时增加了线粒体分裂象关蛋白Fis1-mRNA和Drp1-mRNA水平,CORM-2通过p38 MAPK通路上调血红素氧合酶-1(HO-1)的表达,促进线粒体融合,抑制线粒体分裂,是内毒素性肺损伤的内源性保护机制之一。
SIRT3能够使线粒体融合蛋白OPA1去乙酰化并提高其GTP酶活性,OPA1的SIRT3依赖性激活有助于保护线粒体网络,调节线粒体动力学,提高线粒体功能。在大鼠成肌细胞H9c2细胞中,与OPA1乙酰化相关的SIRT3表达降低,OPA1的乙酰化诱导叔丁基过氧化氢(t-BHP)的裂解从而引起细胞凋亡。SIRT3去乙酰化核蛋白Ku70,可减少线粒体分裂蛋白Drp1相关的线粒体转位,减弱叔丁基过氧化氢诱导的小鼠肝细胞线粒体分裂。厚朴酚通过激活SIRT3,启动Ku70-drp1轴减弱t-BHP诱导的线粒体片段化,降低超氧化物歧化酶2的乙酰化水平,增强其抗氧化能力,促进线粒体生物合成,保护小鼠中t-BHP损伤的AML12肝细胞。这些研究表明,激活SIRT3功能活动可以促进线粒体融合蛋白表达,下调线粒体分裂,从而产生肺脏保护作用。
炎症因子释放诱导的肺组织炎症反应是ALI肺泡毛细血管通透性增加和肺泡紊乱的原因之一,急性炎症和炎症介质的积累在ALI发病机制中发挥重要作用。Toll样受体 4(TLR4)和核因子 -κB(NF-κB)信号通路可引发脓毒症相关的急性炎症反应,增加炎性细胞因子,包括IL-6、MIP-2及一种啮齿类动物中IL-8的功能同源物和肿瘤坏死因子-α(TNF-α)的产生。有研究显示,在内毒素诱导的MH-S巨噬细胞中,白藜芦醇给药后抑制MH-S细胞TNF-α、IL-6和IL-1β的产生增加,这与抑制TLR4募集激活NF-κB、P38和ERK信号转导途径有关。以上研究表明,SIRT3可以通过抑制TLR4信号通路活化,减轻促炎因子的产生,减轻脓毒症肺损伤中毛细血管损伤和肺纤维化。
三、小结
SIRT3在脓毒症诱导的肺损伤中作用机制尚属研究阶段。现有研究证据表明,SIRT3上调是氧化应激反应和细胞保护机制的一部分。在氧化应激条件下,缺乏SIRT3的去乙酰作用可能意味着不能增强SIRT3靶酶的活性以满足需要。SIRT3介导的去乙酰作用可导致大部分靶蛋白活性增强,以维持和调节线粒体的正常生理功能。内毒素急性肺损伤中,ROS生成增多,促炎因子产生通路激活,炎性自噬增多加重细胞凋亡,SIRT3可能通过维持线粒体功能和结构稳定,在脓毒症等临床危重症中发挥保护作用,为临床治疗提供新的思路。
参考文献
1.Barabutis N,Dimitropoulou C,Birmpas C,et al. p53 protects against LPS-induced lung endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol,2015,308(8):776-787.
2.Levitt JE,Matthay MA,Clinical review:Early treatment of acute lung injury--paradigm shift toward prevention and treatment prior to respiratory failure. Crit Care,2012. 16(3):223.
3.Lombard DB,Alt FW,Cheng HL,et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol,2007,27(24):8807-14.
4.Liu H,Li S,Liu X,et al. SIRT3 Overexpression Inhibits Growth of Kidney Tumor Cells and Enhances Mitochondrial Biogenesis. J Proteome Res,2018,17(9):3143-3152.
5.Pillai VB,Kanwal A,Fang YH,et al. Honokiol,an activator of Sirtuin-3(SIRT3)preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget,2017,8(21):34082-34098.
6.Cao K,Lei X,Liu H,et al. Polydatin alleviated radiationinduced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition. J Cell Mol Med,2017,21(12):3264-3276.
7.Sacconnay L,Carrupt PA,Nurisso A,et al. Human sirtuins:Structures and flexibility. J Struct Biol,2016,196(3):534-542.
8.Bheda P,Wang JT,Escalante-Semerena JC,et al. Structure of Sir2Tm bound to a propionylated peptide. Protein Sci,2011,20(1):131-139.
9.Nguyen GT,Schaefer S,Gertz M,et al. Structures of human sirtuin 3 complexes with ADP-ribose and with carba-NAD + and SRT1720:binding details and inhibition mechanism. Acta Crystallogr D Biol Crystallogr,2013,69(Pt 8):1423-32.
10.Schwer B,Bunkenborg J,Verdin RO,et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A,2006,103(27):10224-10229.
11.Wen X,Wu J,Wang F,et al. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med,2013,65:402-410.
12.Hirschey MD,Shimazu T,Huang JY,et al. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb Symp Quant Biol,2011,76:267-277.
13.Haigis MC,Deng CX,Finley LW,et al. SIRT3 is a mitochondrial tumor suppressor:a scientific tale that connects aberrant cellular ROS,the Warburg effect,and carcinogenesis. Cancer Res,2012,72(10):2468-2472.
14.Han C,Someya S. Maintaining good hearing:calorie restriction,Sirt3,and glutathione. Exp Gerontol,2013,48(10):1091-1095.
15.Hebert AS,Dittenhafer-Reed KE,Yu W,et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol. Cell,2013,49(1):186-199.
16.Dang X,Du G,Hu W,et al. Peroxisome proliferatoractivated receptor gamma coactivator-1α/HSF1 axis effectively alleviates lipopolysaccharide-induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem,2018,120(1):544-551.
17.Fu B,Zhao J,Peng W,et al. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells. Biochem Biophys Res Commun,2017,486(1):198-204.
18.Sundaresan NR1,Gupta M,Kim G,et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3adependent antioxidant defense mechanisms in mice. J Clin Invest,2009,119(9):2758-2071.
19.Jiao X,Li Y,Zhang T,et al. Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular epithelial cells. Biochem Biophys Res Commun,2016,480(3):387-393.
20.Eckle T,Brodsky K,Bonney M,et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol,2013. 11(9):e1001665
21.Yang Y,Cimen H,Han MJ,et al. NAD +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J Biol Chem,2010,285(10):7417-7429.
22.Tian YG,Zhang J,Protective effect of SIRT3 on acute lung injury by increasing manganese superoxide dismutasemediated antioxidation. Mol Med Rep,2018,17(4):5557-5565.
23.Qiu T,He YY,Zhang X,et al. Novel Role of ER Stress and Mitochondria Stress in Serum-deprivation Induced Apoptosis of Rat Mesenchymal Stem Cells. Curr Med Sci,2018. 38(2):229-235.
24.Sundaresan NR,Samant SA,Pillai VB,et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol.,2008,28(20):6384-401.
25.Zhang X,Zhuang R,Wu H,et al. A novel role of endocan in alleviating LPS-induced acute lung injury. Life Sci,2018,202:89-97.
26.Hafner AV,Dai J,Gomes AP,et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging(Albany NY),2010,2(12):914-923.
27.Lin Y,Tan D,Kan Q,et al. The Protective Effect of Naringenin on Airway Remodeling after Infection by Inhibiting Autophagy-Mediated Lung Inflammation and Fibrosis. Mediators Inflamm,2018,2018:8753894.
28.Yan WJ,Liu RB,Wang LK,et al. Sirt3-Mediated Autophagy Contributes to Resveratrol-Induced Protection against ER Stress in HT22 Cells. Front Neurosci,2018,12:116.
29.Liu P,Huang G,Wei T,et al. Sirtuin 3-induced macrophage autophagy in regulating NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis,2018,1864(3):764-777.
30.Yang L,Zhang Z,Zhuo Y,et al. Resveratrol alleviates sepsis-induced acute lung injury by suppressing inflammation and apoptosis of alveolar macrophage cells. Am J Transl Res,2018,10(7):1961-1975.
31.Li Y,Qian W,Wang D,et al. Resveratrol relieves particulate matter(mean diameter ﹤ 2.5 μm)-induced oxidative injury of lung cells through attenuation of autophagy deregulation. J Appl Toxicol,2018,38(9):1251-1261.
32.Dong SA,Zhang Y,Yu JB,et al. Carbon monoxide attenuates lipopolysaccharide-induced lung injury by mitofusin proteins via p38 MAPK pathway. J Surg Res,2018,228:201-210.
33.Yu J,Shi J,Wang D,et al. Heme Oxygenase-1/Carbon Monoxide-regulated Mitochondrial Dynamic Equilibrium Contributes to the Attenuation of Endotoxin-induced Acute Lung Injury in Rats and in Lipopolysaccharide-activated Macrophages. Anesthesiology,2016,125(6):1190-1201.
34.Samant SA,Zhang HJ,Hong Z,et al. SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol,2014,34(5):807-19.
35.Signorile A,Santeramo A,Tamma G,et al. Mitochondrial cAMP prevents apoptosis modulating Sirt3 protein level and OPA1 processing in cardiac myoblast cells. Biochim Biophys Acta Mol Cell Res,2017,1864(2):355-366.
36.Liu J,Li D,Zhang T,et al. SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity. Cell Death Dis,2017,8(10):e3158.
37.Liu JX,Shen SN,Tong Q,et al. Honokiol protects hepatocytes from oxidative injury through mitochondrial deacetylase SIRT3. Eur J Pharmacol,2018,834:176-187.
38.Li LF,Liu YY,Chen NH,et al. Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. Lab Invest,2018,98(9):1170-1183.