上QQ阅读APP看书,第一时间看更新
内容提要
本书全面地讲解了在科学领域运用广泛的数据微积分、线性代数、统计学、数值计算、多元统计分析等数学基础知识。全书共6章:第1章介绍了大数据与数学、数学与R语言的关系;第2章介绍了微积分的基础知识,包括函数、极限、导数、微分、不定积分与定积分及其应用;第3章介绍了线性代数的基础知识,包括矩阵的运算、行列式、特征分解、奇异值分解;第4章介绍了统计学的基础知识,包括数据分布特征、概率论、随机变量的数字特征、参数估计、假设检验;第5章介绍了数值计算的基础知识,包括插值方法、函数逼近与拟合、非线性方程(组)求根;第6章介绍了常用的多元统计分析方法,包括回归分析、聚类分析、判别分析、主成分分析、因子分析和典型相关分析。本书中的几乎所有实例都结合R语言进行求解分析,所有章后都有课后习题,可以帮助读者巩固所学的内容。
本书可以作为高校大数据技术类专业的教材,也可作为大数据技术爱好者的自学用书。