生物基材料聚乳酸
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Tsuji H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromolecular Bioscience, 2005, 5(7): 569-597.

[2] Madhavan Nampoothiri K, Nair N R, John R P. An overview of the recent developments in polylactide (PLA) research.Bioresource Technology,2010,121,22:8493-8501.

[3] 洪华,钱颖,许勇,刘昌胜.低分子量聚乳酸对聚乳酸膜结构及性能的影响.华东理工大学学报,2014,30:532-535.

[4] Kalb B, Pennings A J. General crystallization behaviour of poly(L-lactic acid). Polymer, 1980, 21(6): 607-612.

[5] Miyata T, Masuko T. Morphology of poly(L-lactide) solution-grown crystals. Polymer, 1997, 38(16): 4003-4009.

[6] Iwata T, Doi Y. Morphology and enzymatic degradation of poly(L-lactic acid) single crystals. Macromolecules, 1998, 31(8):2461-2467.

[7] Vasanthakumari R, Pennings A J. Crystallization kinetics of poly(L-lactic acid). Polymer, 1983, 24(2): 175-178.

[8] Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules, 2001, 2(3): 1007-1014.

[9] Xu J, Guo B H, Zhou J J, Li L, Wu J, Kowalczuk M. Obsrevation of banded spherulites in pure poly(L-lactide) and its miscible blends with amorphous polymers. Polymer, 2005, 46(21): 9176-9185.

[10] Marubayashi H, Akaishi S, Akasaka S, Asai S, Sumita M. Crystalline structure and morphology of poly(L-lactide) formed under high-pressure CO2. Macromolecules, 2008, 41(23): 9192-9203.

[11] Krikorian V, Pochan D J. Unusual crystallization behavior of organoclay reinforced poly(L-lactic acid) nanocomposites. Macromolecules, 2004, 37(17): 6480-6491.

[12] Wen L, Xin Z. Effect of a novel nucleating agent on isothermal crystallization of poly(L-lactic acid). Chinese Journal of Chemical Engineering, 2010, 18(6): 899-904.

[13] Wen L, Xin Z, Hu D. A new route of manipulation of poly(L-lactic acid) crystallization by self-assembly of p-tert-butylcalixarene and toluene. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(11): 1235-1243.

[14] Cicero J A, Dorgan J R, Garrett J, Runt J, Lin J S. Effects of molecular architecture on two-step, melt-spun poly(lactic acid) fibers. Journal of Applied Polymer Science, 2002, 86(11): 2839-2846.

[15] Cicero J A, Dorgan J R, Janzen J, Garrett J, Runt J, Lin J S. Supramolecular morphology of two-step, melt-spun poly(lactic acid) fibers. Journal of Applied Polymer Science, 2002, 86(11):2828-2838.

[16] Mahendrasingam A, Blundell D J, Parton M, Wright A K, Rasburn J, Narayanan T, Fuller W. Time resolved study of oriented crystallisation of poly(lactic acid) during rapid tensile deformation. Polymer, 2005, 46(16): 6009-6015.

[17] Lv R, Na B, Li Z, Zou S, Tian N, Chen F, Fu Q. Stretch-induced shisk-kebabs in rubbery poly(L-lactide). Journal of Macromolecular Science, Part B, 2011, 50(10): 2042-2049.

[18] Xu H, Zhong GJ, Fu Q, Lei J, Jiang W, Hsiao BS, Li Z M. Formation of shisk-kebabs in injection-molded poly(L-lactic acid) by application of an intense flow field. ACS Applied Materials and Interfaces, 2012, 4(12): 6774-6784.

[19] Bai H, Zhang W, Deng H, Zhang Q, Fu Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules, 2011, 44(6): 1233-1237.

[20] Ninomiya N, Kato K, Fujimori A, Masuko T. Transcrystalline structures of poly(L-lactide). Polymer, 2007, 48(16): 4874-4882.

[21] Le Duigou A, Davies P, Baley C. Interfacial bonding of flax fibre/poly(L-lactide) bio-composites. Composites Science and Technology, 2010, 70(2): 231-239.

[22] Wang Y, Tong B, Hou S, Li M, Shen C. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Composites Part A: Applied Science and Manufacturing, 2011, 42(1): 66-74.

[23] Ning N, Zhang W, Yan J, Xu F, Wang T, Su H, Tang C, Fu Q. Largely enhanced crystallization of semi-crystalline polymer on the surface of glass fiber by using graphene oxide as a modifier. Polymer, 2013, 54(1): 303-309.

[24] Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Progress in Polymer Science, 2009, 34(7): 605-640.

[25] De Santis P, Kovacs A J. Molecular conformation of poly(S-lactic acid). Biopolymers, 1968, 6(3): 299-306.

[26] Aleman C, Lotz B, Puiggali J. Crystal structure of the α-form of poly(L-lactide). Macromolecules, 2001, 34(14): 4795-4801.

[27] Sasaki S, Asakura T. Helix distortion and crystal structure of the α-form of poly(L-lactide). Macromolecules, 2003, 36(22): 8385-8390.

[28] Eling B, Gogolewski S, Pennings A J. Biodegradable materials of poly(L-lactic acid):1. Melt-spun and solution-spun fibres. Polymer, 1982, 23(11): 1587-1593.

[29] Sawai S, Takahashi K, Imamura T, Nakamura K, Kanamoto T, Hyon S H. Preparation of oriented β-form poly(L-lactic acid) by solid-state extrusion. Journal of Polymer Science Part B: Polymer Physics, 2002, 40(1): 95-104.

[30] Hoogsteen W, Postema A R, Pennings A J, Ten Brinke G, Zugenmaier P. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules, 1990, 23(2): 634-642.

[31] Puiggali J, Ikada Y, Tsuji H, Cartier L, Okihara T, Lotz B. The frustrated structure of poly(L-lactide). Polymer, 2000, 41(25): 8921-8930.

[32] Cartier L, Okihara T, Ikada Y, Tsuji H, Puiggali J, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer, 2000, 41(25): 8909-8919.

[33] Zhang J, Duan Y, Sato H, Tsuji H, Noda I, Yan S, Ozaki Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules, 2005, 38(19): 8012-8021.

[34] Zhang J, Tashiro K, Domb A J, Tsuji H. Confirmation of disorder α form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromolecular Symposia, 2006, 242(1): 274-278.

[35] Kalish J P, Aou K, Yang X, Hsu S L. Spectroscopic and thermal analyses of α' and α crystalline forms of poly(L-lactic acid). Polymer, 2011, 52(3): 814-821.

[36] Kalish J P, Zeng X, Yang X, Hsu S L. A spectroscopic analysis of conformational distortion in the α' phase of poly(lactic acid). Polymer, 2011, 52(15): 3431-3436.

[37] Wasansuk K, Tashiro K. Crystal structure and disorder in poly(L-lactic acid) δ form (α' form) and the phase transition mechanism to the ordered α form. Polymer, 2011, 52(26): 6097-6109.

[38] Wasanasuk K, Tashiro K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterrings. Macromolecules, 2011, 44(24): 9650-9660.

[39] Marubayashi H, Asai S, Sumita M. Complex crystal formation of poly(L-lactide) with solvent molecules. Macromolecules, 2012, 45(3): 1384-1397.

[40] Marubayashi H, Asai S, Sumita M. Guest-induced crystal-to-crystal transitions of poly(L-lactide) complexs. The Journal of Physical Chemistry B, 2013, 117(1): 385-397.

[41] Ikada Y, Jamshidi K, Tsuji H, Hyon S H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules, 1987, 20(4):904-906.

[42] Okihara T, Tsuji M, Kawaguchi A, Katayama K I, Tsuji H, Hyon SH, Ikada Y. Crystal structure of stereocomplex of poly(L-lactide) and poly(D-lactide). Journal of Macromolecular Science, Part B, 1991, 30(1-2): 119-140.

[43] Cartier L, Okihara T, Lotz B. Triangular polymer single crystals: Stereocomplexes, twins, and frustrated structures. Macromolecules, 1997, 30(20): 6313-6322.

[44] Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y. Infrared spectroscopic study of CH3…OC interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules, 2005, 38(5): 1822-1828.

[45] Di Lorenzo M L.Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid).J Appl Polym Sci,2006, 100:3145-3151.

[46] Abe H, Kikkawa Y, Inoue Y, Doi Y. Morphological and kinetic analyses of regime transition for poly[(S)-lactide] crystal growth. Biomacromolecules,2001, 2: 1007-1014.

[47] Pan P J, Zhu B, Kai W H, Dong T, Inoue Y. Effect of crystallization temperature on crystal modifications and crystallization kinetics of poly(L-lactide). J Appl Polym Sci, 2008, 107: 54-62.

[48] Di Lorenzo M L. Crystallization behavior of poly(L-lactic acid). Eur Polym J, 2005, 41(3): 569-575.

[49] Zhang J M, Duan Y X, Sato H, Tjusi H, Noda I, Yan S K, Ozaki Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules,2005, 38: 8012-8021.

[50] Huang S Y, Jiang S C, An L J, Chen X S. Crystallization and morphology of poly(ethylene oxide-b-lactide) crystalline-crystalline diblock copolymers. J Polym Sci Part B: Poly Phys, 2008, 46: 1400-1411.

[51] Cho T Y, Strobl G. Temperature dependent bariations in the lamellar structure of poly(L-lactide). Polymer, 2006, 47: 1036-1043.

[52] Mano J F, Ribelles J L, Alves N M, Sanchez M S. Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 2005, 46: 8258-8265.

[53] He Y, Xu Y, Wei J, et al. Unique crystallization behavior of poly(L-lactide)/poly(D-lactide) stereocomplex depending on initial melt states. Polymer, 2008, 49: 5670-5675.

[54] Mijovié J, Sy J W. Molecular dynamics during crystallization of poly(L-lactic acid) as studied by broad-band dielectric relaxation spectroscopy. Macromolecules, 2002, 35(16): 6370-6376.

[55] Bras A R, Vieiosa M T, Wang Y M, Dionisio M, Mano J F. Crystallization of poly(L-lactic acid) probed with dielectric relaxation spectroscopy. Macromolecules, 2006, 39(19): 6513-6520.

[56] Zhang J M, Tashiro K, Domb A J, Tsuji H. Confirmation of disorder a form of poly(L-lactic acid) by the X-ray fiber pattern and polarized IR/Raman spectra measured for uniaxially-oriented samples. Macromol Symp, 2006, 242: 274-278.

[57] Yamane H, Sasai K. Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid). Polymer, 2003, 44: 2569-2575.

[58] Tsuji H, Takai H, Saha S K. Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer, 2006, 47: 3826-3837.

[59] Schmidt S C, Hillmyer M A. Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. Journal of Polymer Science Part B: Polymer Physics, 2001, 39: 300-313.

[60] Anderson K S, Hillmyer M A. Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer, 2006, 47: 2030-2035.

[61] Brochu S, Prud’homme R E, Barakat I, Jerome R. Stereocomplexation and morphology of polylactides. Macromolecules,1995, 28: 5230-5239.

[62] Pan P J, Yang J J, Shan G R, Bao Y, Weng Z X, Cao A M, Yazawa K, Inoue Y.Temperature Variable FTIR and Solid-State 13C NMR Investigation on crystalline structure and molecular dynamics of polymorphic poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Macromolecules, 2012, 45: 189-197.

[63] Tsuji H, Tezuka Y. Stereocomplex formation between enantiometric poly(lactic acid)s. 12. Spherulite growth of low-molecularweight poly(lactic acid)s from the melt. Biomacromolecules, 2004, 5: 1181-1186.

[64] Ikada Y, Jamshidi K, Tsuji H, Huon S H.Stereocomplex formation between enantiomeric poly(lactides). Macromolecules, 904-906.

[65] Sun J R, Shao J, Huang S Y, Zhang B, Li G, Wang X H, Chen X S.Thermostimulated crystallization of polylactide stereocomplex. Materials Letters, 2012, 89: 169-171.

[66] Tsuji H. Poly(lactide) stereocomplexes: Formation, structure, properties, degradation, and applications. Macromolecular Bioscience, 2005, 5: 569-597.

[67] Tsuji H, Horii F, Nakagawa M, Ikada Y, et al. Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonotrile solution as studied by high resolution solid state 13C NMR spectroscopy. Macromolecules, 1992, 25(21): 4114-4118.

[68] Liu G M, Zhang X Q, Wang D J. Tailoring crystallization: towards high performance poly(lactic acid).Advanced Materials 2015, 26(40): 6905-6911.

[69] Alemán C, Lotz B, Puiggali J. Crystal structure of the alpha-form of poly(L-lactide).Macromolecules, 2001, 34: 4795-4801.

[70] Sawai D, Tsugane Y, Tamada M, Kanamoto T, Sungil M, Hyon S H.Crystal density and heat of fusion for a stereo-complex of poly(L-lactic acid) and poly(D-lactic acid).J Polym Sci Part B: Polym Phys, 2007, 45(18): 2632-2639.

[71] Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N. Effect of polylactide stereocomplex on the crystallization behavior of poly(l-lactic acid). Macromolecules, 2009, 42: 4739-4745.

[72] Tsuji H, Hyon S H, Ikada Y.Stereocomplex formation between enantiomeric poly(1actic acid)s.3. Calorimetric studies on blend films cast from dilute solution. Macromolecules, 1991, 24: 5651-5656.

[73] Tsuji H, Horii F, Hyon S H, Ikada Y, Stereocomplex formation between enantiomeric poly(1actic acid)s.2. Stereocomplex formation in concentrated solutions. Macromolecules, 1991, 24: 2719-2724.

[74] Han L L, Pan P J, Shan G R, Bao Y Z.Stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) racemic blends promoted by a selective nucleator. Polymer, 2015, 63: 144-153.

[75] Furuhashi Y, Kimura Y, Yoshie N, Yamane H. Higher-order structures and mechanical properties of stereocomplex-type poly(lactic acid) melt spun fibers. Polymer, 2006, 47(16): 5965-5972.

[76] Tsuji H, Tashiro K, Bouapao L, Hanesaka M. Synchronous and separate homo-crystallization of enantiomeric poly (L-lactic acid)/poly(D-lactic acid) blends. Polymer, 2012, 53(3): 747-754.

[77] Na B, Zhu J, Lv R H, Ju Y H, Tian R P, Chen B B. Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: Crystallization kinetics and crystal morphology. Macromolecules, 2014, 47(1): 347-352.

[78] Woo EM, Chang L. Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(L-lactic acid) with excess poly(D-lactic acid). Polymer, 2011, 52: 6080-6089.

[79] Tsuji H, Hyon S H, Ikada Y. Stereocomplex formation between enantiomeric poly(1actic acid)s.4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid). Macromolecules, 1991, 24: 5657-5662.

[80] Tsuji H, Hyon S H, Ikada Y. Stereocomplex formation between enantiomeric poly(1actic acid)s.5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules, 1992, 25: 2940-2946.

[81] Xiong Z J, Liu G M, Zhang X Q, Wen T, Vos S, Joziasse C, Wang D J. Temperature dependence of crystalline transition of highly-oriented poly (L-lactide)/poly(D-lactide) blend: In-situ synchrotron X-ray scattering study. Polymer, 2013, 54: 964-971.

[82] Marubayashi H, Nobuoka T, Iwamoto S, Takemura A, Iwata T. Atomic force microscopy observation of polylactide stereocomplex edge-on crystals in thin films: Effects of molecular weight on lamellar curvature. ACS Macro Lett, 2013, 2:355-360.

[83] Maillard D, Prud’homme R E. Differences between crystals obtained in PLLA-rich or PDLA-rich stereocomplex mixtures. Macromolecules, 2010, 43: 4006-4010.

[84] Bao R Y, Yang W, Wei X F, Xie B H, Yang M B. Enhanced formation of stereocomplex crystallites of high molecular weight poly(L-lactide)/poly(D-lactide) blends from melt by using poly(ethylene glycol). ACS Sustainable Chem Eng, 2014, 2: 2301-2309.

[85] Samuel C, Cayuela J, Barakat I, Müller A J, Raquez J M, Dubois P. Stereocomplexation of polylactide enhanced by poly(methyl methacrylate): Improved processability and thermomechanical properties of stereocomplexable polylactide-based materials. ACS Appl Mater Interfaces, 2013, 5: 11797-11807.

[86] Nagahama K, Aoki R, Saito T, Ouchi T, Ohya Y, Yui N. Enhanced stereocomplex formation of enantiomeric polylactides grafted on a polyrotaxane platform. Polymer Chemistry, 2013, 4: 1769-1773.

[87] Okihara T, Tsuji M, Kawaguchi A, Katayama Ki, Tsuji H, Hyon S, Ikada Y. Crystal structure of stereocomplex of poly(l-lactide) and poly(d-lactide). Journal of Macromolecular Science, Part B: Physics, 1991, 30: 119-140.

[88] Brizzplara D, Cantow H J. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules,1996, 29: 191-197.

[89] Fischer E W, Sterzel H J, Wegner G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid and Polymer Science, 1973, 251: 980-990.

[90] De Santis P, Kovacs A. Molecular conformation of poly(S-lactic acid). Biopolymers, 1968, 6: 299-306.

[91] Hoogsten W, Postema A R, Pennings A J, Brinke G, Zugenmaier P. Crystal structure conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules, 1990, 23: 634-642.

[92] Puiggali J, Ikada Y, Tjusi H, Lotz B. The frustrated structure of poly(L-lactide). Polymer, 2000, 41925: 8921-8930.

[93] Cartier L, Okihara T, Ikada Y, Tjusi H, Lotz B. Epitaxial crystallization and crystalline polymorphism of polylactides. Polymer,2000, 41(25): 8909-8919.

[94] Cartier L, Okihara T, Lotz B. Triangular polymer single crystals: stereocomplexes twins and frustrated structures. Macromolecules,1997, 30: 6313-6322.

[95] Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromol Chem Phys, 1996, 197: 3483-3499.

[96] Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules, 1992, 25: 5719-5723.

[97] Tsuji H, Ikada Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 9. Stereocomplexation from the melt. Macromolecules, 1993. 26: 6918-6926.

[98] Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications.Macromol Rapid Commun, 2000, 21: 117-132.

[99] Witzke D R. Introduction to properties, engineering, and prospects of polylactidepolymers. East Lansing: Michigan State University, 1997.

[100] Tsuji H, Ikada Y. Crystallization from the melt of poly(lactide)s with different optical purities and their blends.Macromol Chem Phys, 1996, 197: 3483-3499.

[101] Tsuji H, Ikada Y. Properties and morphology of poly(L-lactide). 4. Effects of structural parameters on long-term hydrolysis of poly(L-lactide) in phosphate-bufferedsolution.Polym Degrad Stabil, 2000, 67: 179-189.

[102] Miyata T, Masuko T. Crystallization behaviour of poly(L-lactide). Polymer, 1998, 39(22): 5515-5521.

[103] Di Lorenzo M L. Crystallization behavior of poly(L-lactic acid). European Polymer Journal, 2005, 41(3):569-575.

[104] Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K.Crystallization behavior of poly(L-lactic acid). Polymer, 2006, 47(21): 7554-7563.

[105] Ohtani Y, Okumura K, Kawaguchi A. Crystallization behavior of amorphous poly(L-lactide). Journal of Macromolecular Science, Part B, 2003, 42(3-4):875-888.

[106] Cho T Y, Strobl G. Temperature dependent variations in the lamellar structure of poly(L-lactide). Polymer, 2006, 47(4): 1036-1043.

[107] Saeidlou S, Huneault M A, Li H, Park C B. Poly(lactic acid) crystallization. Progress in Polymer Science, 2012, 37(12): 1657-1677.

[108] Yasuniwa M, Iura K, Dan Y. Melting behavior of poly(L-lactic acid): Effects of crystallization temperature and time. Polymer, 2007, 48(18): 5398-5407.

[109] Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C. Thermal analysis of the double-melting behavior of poly(L-lactic acid). Journal of Polymer Science Part B: Polymer Physics, 2004, 42(1): 25-32.

[110] Wang Y, Mano J F. Influence of melting conditions on the thermal behaviour of poly(L-lactic acid). European Polymer Journal, 2005, 41(10): 2335-2342.

[111] Wang Y, Mano J F. Role of thermal history on the thermal behavior of poly(L-lactic acid) studied by DSC and optical microscopy. Journal of Thermal Analysis and Calorimetry, 2005, 80(1): 171-175.

[112] Di Lorenzo M L. Calorimetric analysis of the multiple melting behavior of poly(L-lactic acid). Journal of Applied Polymer Science, 2006, 100(4): 3145-3151.

[113] Di Lorenzo M L. The crystallization and melting processes of poly(L-lactic acid). Macromolecular Symposia, 2006, 234(1): 176-183.

[114] Ling X, Spruiell J E. Analysis of the complex thermal behavior of poly(L-lactic acid) film. I. Samples crystallized from the glassystate.Journal of Polymer Science Part B: Polymer Physics, 2006, 44(22): 3200-3214.

[115] Ling X, Spruiell J E. Analysis of the complex thermal behavior of poly(L-lactic acid) film. Ⅱ. Samples crystallized from the melt. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(23): 3378-3391.

[116] He Y, Fan Z, Hu Y, Wu T, Wei J, Li S. DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(L-lactide) with different molecular weights.European Polymer Journal, 2007, 43(10): 4431-4439.

[117] Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M. Crystallization and melting behavior of poly(L-lactic acid). Macromolecules, 2007, 40(26): 9463-9469.

[118] Pan P, Kai W, Zhu B, Dong T, Inoue Y. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules, 2007, 40(19): 6898-6905.

[119] Yasuniwa M, Sakamo K, Ono Y, Kawahara W. Melting behavior of poly(L-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 2008, 49(7): 1943-1951.

[120] Zhang J, Tashiro K, Tsuji H, Domb A J. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules, 2008, 41(4): 1352-1357.

[121] Xu H S, Dai X J, Lamb P R, Li Z M. Poly(L-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. Journal of Polymer Science Part B: Polymer Physics, 2009, 47(23): 2341-2352.

[122] Calafel M I, Remiro P M, Cortazar M M, Calahorra ME. Cold crystallization and multiple melting behavior of poly(L-lactide) in homogeneous and in multiphasic epoxy blends. Colloid and Polymer Science, 2010, 288(3): 283-296.

[123] Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). Journal of Polymer Science Part B: Polymer Physics, 2011, 49(6): 409-413.

[124] Shien Y T, Liu G L. Temperature-modulated differential scanning calorimetry studies on the origin of double melting peaks in isothermally melt-crystallized poly(L-lactic acid). Journal of Polymer Science Part B: Polymer Physics, 2007, 45(4): 466-474.

[125] Su Z, Li Q, Liu Y, Hu G H, Wu C. Multiple melting behavior of poly(lactic acid) filled with modified carbon black. Journal of Polymer Science Part B: Polymer Physics, 2009, 47(20): 1971-1980.