基因修饰T细胞技术进展及临床应用
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

三、全球肿瘤免疫治疗临床试验简介

检索Clinical Trial网站提示:从20世纪90年代开始,进入Ⅲ期临床试验的肿瘤免疫治疗试验开始明显增加,这反映了肿瘤免疫治疗的发展趋势和在肿瘤临床治疗方面所取得的巨大成功[88]。通过输入关键词tumor vaccines(肿瘤疫苗)、cell immunotherapies(细胞免疫治疗)和tumor monoclonal antibodies(肿瘤单克隆抗体),检索三类免疫治疗方法在Clinical Trial网站上不同年份的注册情况。截止到2018年1月,统计结果如图1-4所示,柱形图反映了不同年代、不同免疫治疗方法临床试验的增长趋势。

图1-4 肿瘤免疫治疗临床试验分析(来源:Clinical Trial)

截止到2017年,全球注册的肿瘤疫苗的临床试验达1581项,美国开展的有1024项,东亚各国(含中国41项)开展的有125项,欧洲244项。其中进入临床Ⅲ期的试验达121项,比较突出的有HPV(human papillomavirus vaccine)CervarixTM治疗宫颈癌和EGF vaccine治疗非小细胞肺癌,而宫颈癌疫苗Cervarix已于2009年在美国被批准上市,我国已经于2017年7月批准其在中国上市。2009年古巴批准了CIMAvaxEGF 疫苗治疗肺癌,2009年俄罗斯批准了Oncophage (HSPPC-96,依赖于HSPs的疫苗)治疗肾癌,2010年美国批准了Provenge在前列腺癌治疗中的应用[89]

截止到2017年,全球注册的单克隆抗体治疗的临床试验为2489项,进入Ⅲ期的临床试验为239项,其中美国有1813项,东亚各国(含中国79项)开展的有155项,欧洲有466项,含目前广泛使用的单克隆抗体药物CTLA-4、PD-1、alemtuzumab(CD52抗体)、rituxumab(CD20抗体)、trastuzumab(赫赛汀)等[90]

截止到2017年,全球注册的细胞免疫治疗临床试验共计1317项,其中美国有709项,东亚各国(含中国184项)有226项,欧洲299项。在免疫细胞治疗领域,我国近年来发展迅速。目前免疫细胞治疗进入Ⅲ期临床试验的有105项。CAR-T细胞治疗有488项,占比37%,并且有15项已经进入Ⅲ期临床试验。其中美国FDA 分别于2017年8月30日和2017年10月18日批准诺华和Kite Pharma的CAR-T细胞治疗药物上市,用于治疗急性淋巴细胞白血病和成人大B细胞淋巴瘤[91]。这两个细胞治疗药物的获批,标志着CAR-T细胞治疗的全新发展时代,推动肿瘤的免疫治疗从辅助性治疗逐渐进入到现代肿瘤治疗的主流[92]

(曹俊霞 董 杰 王征旭 张积仁 傅世林 孙国平)

参考文献

[1] Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer,2009,9(5):361-371.

[2] Kirkwood J M, Tarhini A A, Panelli M C,et al. Next generation of immunotherapy for melanoma. J Clin Oncol,2008,26:3445-3455.

[3] DeVita V T,Jr, Rosenberg S A. Two hundred years of cancer research. N Engl J Med,2012,366(23):2207-2214.

[4] Mashima E, Inoue A, Sakuragi Y,et al. Nivolumab in the treatment of malignant melanoma: review of the literature. Onco Targets Ther,2015,8:2045-2051.

[5] Davila M L, Riviere I, Wang X,et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med,2014,6(224):224ra25.

[6] Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech,2015,8(4):337-350.

[7] Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature,2011,480(7378):480-489.

[8] 马兴铭,丁剑冰. 医学免疫学.北京:清华大学出版社,2013.

[9] Restifo N P,Dudley M E,Rosenberg S A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol, 2012,12(4):269-281.

[10] Dehghani M, Sharifpour S, Amirghofran Z, et al. Prognostic significance of T cell subsets in peripheral blood of B cell non-Hodgkin's lymphoma patients. Med Oncol, 2012,29(4):2364-2371.

[11] Roychoudhuri R,Eil R L,Restifo N P. The interplay of effector and regulatory T cells in cancer. Curr Opin Immunol, 2015,33:101-111.

[12] Slaney C Y,Kershaw M H,Darcy P K. Trafficking of T cells into tumors. Cancer Res, 2014,74(24):7168-7174.

[13] Hamzah J, Jugold M, Kiessling F, et al. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature, 2008,453(7193):410-414.

[14] Pico de Coaña Y, Choudhury A, Kiessling R. Checkpoint blockade for cancer therapy: revitalizing a suppressed immune system. Trends Mol Med,2015,21(8):482-491.

[15] Nurieva R, Wang J, Sahoo A. T-cell tolerance in cancer. Imunotherapy,2013,5(5):513-531.

[16] Nurieva R, Thomas S, Nguyen T, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J,2006,25(11):2623-2633.

[17] Nurieva R I, Chung Y, Hwang D,et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity,2008,29(1):138-149.

[18] Reichert J M. Antibodies to watch in 2017. MAbs,2017,9(2):167-181.

[19] Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol,2006,177(7):4376-4383.

[20] Waitz R, Solomon S B, Petre E N,et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res,2012,72(2):430-439.

[21] Hodi F S, O'Day S J, McDermott D F,et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med,2010,363(8):711-723.

[22] Greenwald R J, Freeman G J, Sharpe A H. The B7 family revisited. Annu Rev Immunol,2005,23:515-548.

[23] Zhang Y, Chung Y, Bishop C,et al. Regulation of T cell activation and tolerance by PDL2. Proc Natl Acad Sci U S A,2006,103(31):11695-11700.

[24] Brahmer J R, Drake C G, Wollner I,et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol,2010,28(19):3167-3175.

[25] Chapoval A I, Ni J, Lau J S,et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol,2001,2(3):269-274.

[26] Suh W K, Gajewska B U, Okada H, et al. The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol,2003,4(9):899-906.

[27] Prasad D V, Richards S, Mai X M, et al. B7S1, a novel B7 family member that negatively regulates T cell activation. Immunity,2003,18(6):863-873.

[28] Zang X, Loke P, Kim J, et al. B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A,2003,100(18):10388-10392.

[29] 郝希山,魏于全.全国高等学校教材:肿瘤学.北京:人民卫生出版社,2010.

[30] Hu Z, Ott P A, Wu C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol,2018,18(3):168-182.

[31] Rowley D A, Fitch F W. The road to the discovery of dendritic cells, a tribute to Ralph Steinman. Cell Immunol,2012,273(2):95-98.

[32] Steinman R M, Cohn Z A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med,1973,137(5):1142-1162.

[33] Kantoff P W, Higano C S, Shore N D, et al. IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med,2010,363(5):411-422.

[34] Cao J X, Zhang X Y, Liu J L,et al. Clinical efficacy of tumor antigen-pulsed DC treatment for high-grade glioma patients: evidence from a meta-analysis. PLoS One,2014,9(9):e107173.

[35] Carreno B M, Magrini V, Becker-Hapak M,et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science,2015,348(6236):803-808.

[36] Tran E, Turcotte S, Gros A,et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science,2014,344(6184):641-645.

[37] Ott P A, Hu Z, Keskin D B,et al.An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017,547(7662):217-221.

[38] Sahin U, Derhovanessian E, Miller M,et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature,2017,547(7662):222-226.

[39] Choi D,Kim T G,Sung Y C. The past, present, and future of adoptive T cell therapy. Immune Netw, 2012,12(4):139-147.

[40] Qian X,Wang X,Jin H. Cell transfer therapy for cancer: past, present, and future. J Immunol Res, 2014,2014:525913.

[41] Grimm E A, Mazumder A, Zhang H Z,et al. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med, 1982,155(6):1823-1841.

[42] Schmidt-Wolf I G, Negrin R S, Kiem H P,et al. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med,1991,174(1):139-149.

[43] Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer, 2011,2:363-368.

[44] Takayama T, Sekine T, Makuuchi M,et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet, 2000,356(9232):802-807.

[45] Wang Z X, Li J L, Cao J X,et al. Cytokine-induced killer cells in the treatment of patients with renal cell carcinoma: a pooled meta-analysis. Immunotherapy, 2014,6(6):787-795.

[46] Lee J H, Lee J H, Lim Y S, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology,2015,148(7):1383-1391.

[47] Kong D S, Nam D H, Kang S H,et al. Phase Ⅲ randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget,2017,8(4):7003-7013.

[48] Jiang N, Qiao G, Wang X,et al. Dendritic cell/cytokine induced killer cell immunotherapy combined with S-1 in patients with advanced pancreatic cancer: A prospective study. Clin Cancer Res,2017,23(17):5066-5073.

[49] Schmeel L C, Schmeel F C, Coch C,et al. Cytokine-induced killer (CIK) cells in cancer immunotherapy: report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol,2015,141(5):839-849.

[50] Zhang Y, Xia L, Zhang Y, et al. Analysis of adverse events following the treatment of autologous cytokine-induced killer cells for adoptive immunotherapy in malignant tumour sufferers. Expert Opin Biol Ther,2015,15(4):481-493.

[51] Wang M, Cao J X, Pan J H,et al. Adoptive immunotherapy of cytokine-induced killer cell therapy in the treatment of non-small cell lung cancer. PLoS One, 2014,9(11): e112662.

[52] Wang Z X, Li J L, Cao J X,et al. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: a meta-analysis. Cytotherapy, 2014,16(7):934-945.

[53] Wang Z X, Cao J X, Liu Z P,et al. Combination of chemotherapy and immunotherapy for colon cancer in China: a meta-analysis. World J Gastroenterol, 2014,20(4):1095-1106.

[54] Sim G C, Chacon J, Haymaker C,et al. Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs, 2014,28(5):421-437.

[55] Vesely M D, Kershaw M H, Schreiber R D, et al. Natural innate and adaptive immunity to cancer. Annu Rev Immunol,2011,29:235-271.

[56] Tran E, Turcotte S, Gros A,et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer.Science,2014,344(6184):641-645.

[57] Chandran S S, Somerville R P T, Yang J C, et al. Treatment of metastatic uveal melanoma with adoptive transfer of tumour-infiltrating lymphocytes: a single-centre, two-stage, single-arm, phase 2 study. Lancet Oncol,2017,18(6):792-802.

[58] Li W, Xu L, Wang Y,et al. Efficacy of Tumor-Infiltrating Lymphocytes Combined with IFN-α in Chinese Resected Stage Ⅲ Malignant Melanoma. J Immunol Res,2017,2017:1092507.

[59] Poggi A,Zocchi M R. Gammadelta T Lymphocytes as a First Line of Immune Defense: Old and New Ways of Antigen Recognition and Implications for Cancer Immunotherapy. Front Immunol, 2014,5:575.

[60] Li K, Zhang Q, Zhang Y, et al. T-cell-associated cellular immunotherapy for lung cancer. J Cancer Res Clin Oncol, 2015. 141(7):1249-1258.

[61] Domogala A,Madrigal J A,Saudemont A. Natural Killer Cell Immunotherapy: From Bench to Bedside. Front Immunol, 2015,6:264.

[62] 张敏,李佳,俞德超. 靶向抗肿瘤单克隆抗体药物应用的现状和展望.中国肿瘤生物治疗杂志,2017, 24(9): 929-937.

[63] McLaughlin P, Grillo-López A J, Link B K, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol,1998,16(8):2825-2833.

[64] Joensuu H, Kellokumpu-Lehtinen P L, Bono P, et al. Adjuvant docetaxel or vinorelbine with or without trastuzumab for breast cancer. N Engl J Med,2006,354(8):809-820.

[65] Dall P, Koch T, Göhler T,et al. Trastuzumab without chemotherapy in the adjuvant treatment of breast cancer: subgroup results from a large observational study. BMC Cancer,2018,18(1):51.

[66] Maughan T S, Adams R A, Smith C G, et al. Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet,2011,377(9783):2103-2114.

[67] Karapetis C S, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med,2008,359(17):1757-1765.

[68] Douillard J Y, Siena S, Cassidy J, et al. Final results from PRIME: randomized phase Ⅲ study of panitumumab with FOLFOX4 for first-line treatment of metastatic colorectal cancer. Ann Oncol,2014,25(7):1346-1355.

[69] Price T J, Peeters M, Kim T W, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol,2014,15(6):569-579.

[70] 卢世璧,吴祖泽,付小兵,等. 我国细胞技术类再生医学创新型技术产业发展战略研究.中国工程科学,2017,19(2):95-99.

[71] Kaplon H, Reichert J M. Antibodies to watch in 2018. MAbs,2018,10(2):183-203.

[72] Curran K J, et al. Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther, 2015,23(4):769-778.

[73] Brown M P, et al. Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice. Nat Med, 1998,4(11):1253-1260.

[74] Chanmee T, et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel), 2014,6(3):1670-1690.

[75] Weidner N, et al. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol, 1993,143(2):401-409.

[76] Huang H, et al. VEGF suppresses T-lymphocyte infiltration in the tumor microenvironment through inhibition of NF-kappaB-induced endothelial activation. FASEB J, 2015,29(1):227-238.

[77] Roberts E,Cossigny D A,Quan G M.The role of vascular endothelial growth factor in metastatic prostate cancer to the skeleton. Prostate Cancer, 2013,2013:418340.

[78] Hillerdal V,Essand M. Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. BioDrugs, 2015,29(2):75-89.

[79] Bernhard H, et al. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother, 2008,57(2):271-280.

[80] Langer C J, Gadgeel S M, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol,2016,17(11):1497-1508.

[81] Antonia S J, Villegas A, Daniel D, et al. Durvalumab after Chemoradiotherapy in Stage Ⅲ Non-Small-Cell Lung Cancer. N Engl J Med,2017,377(20): 1919-1929.

[82] Sclafani F. PD-1 inhibition in metastatic dMMR/MSI-H colorectal cancer. Lancet Oncol. 2017,18(9):1141-1142.

[83] Goswami S, Sharma P. Genetic biomarker for cancer immunotherapy. Science,2017,357(6349):358.

[84] Overman M J, Lonardi S, Wong K Y M, et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol, 2018, 20:JCO2017769901.

[85] Overman M J, McDermott R, Leach J L,et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol,2017,18(9):1182-1191.

[86] Eggermont A M, Chiarion-Sileni V, Grob J J,et al. Prolonged Survival in Stage Ⅲ Melanoma with Ipilimumab Adjuvant Therapy. N Engl J Med,2016,375(19):1845-1855.

[87] Weber J, Mandala M, Del Vecchio M, et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage Ⅲ or Ⅳ Melanoma. N Engl J Med,2017,377(19):1824-1835.

[88] Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov,2016,15(4):235-247.

[89] Song Q, Zhang C D, Wu X H. Therapeutic cancer vaccines: From initial findings to prospects. Immunol Lett. 2018 ,196:11-21.

[90] Trapani J A, Darcy P K. Immunotherapy of cancer. Aust Fam Physician,2017,46(4):194-199.

[91] Neelapu S S. An interim analysis of the ZUMA-1 study of KTE-C19 in refractory, aggressive non-Hodgkin lymphoma. Clin Adv Hematol Oncol,2017,15(2):117-120.

[92] Rosenberg S A. Decade in review-cancer immunotherapy: entering the mainstream of cancer treatment. Nat Rev Clin Oncol,2014,11(11):630-632.