2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
这个比值称为函数的平均变化率,又称差商.
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
法则3 两个函数商的导数
推论3
例3 已知函数y=tan x,求y′.
例4 已知函数y=sec x,求y′.
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
用类似方法可得
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
对x求导,得
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数 ,及x对t的导数 ,即得y对x的导数
例15 求由参数方程所确定的函数的导数
故
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
同理可得