人工智能与大数据技术导论
上QQ阅读APP看书,第一时间看更新

前言

2017年是人工智能(Artificial Intelligence, AI)年,人工智能技术越来越多地应用到日常生活的方方面面。AlphaGo ZERO碾压AlphaGo实现自我学习,百度无人汽车上路,iPhone X开启FaceID,阿里和小米先后发布智能音箱,肯德基上线人脸支付……这些背后都是人工智能技术的驱动。2017年7月,国家发布了新一代人工智能发展规划,将中国人工智能产业的发展推向了新高度。

人工智能技术是继蒸汽机、电力、互联网科技之后最有可能带来新一次产业革命浪潮的技术,在爆炸式的数据积累、基于神经网络模型的新型算法与更加强大、成本更低的计算力的促进下,本次人工智能的发展受到风险投资的热烈追捧而处于高速发展时期,人工智能技术的应用场景也在各个行业逐渐明朗,开始带来实际商业价值。在金融行业,人工智能可以在风险控制、资产配置、智能投顾等方向进行应用,预计将带来约6000亿元的降本增益效益。在汽车行业,人工智能在自动驾驶上的技术突破,将带来约5000亿元的价值增益。在医疗行业,通过人工智能技术,在药物研发领域可以提高成功率,在医疗服务机构可以提供疾病诊断辅助、疾病监护辅助,预计可以带来约4000亿元的降本价值。在零售行业,人工智能在推荐系统上的运用将提高在线销售的销量,同时能够对市场进行精准预测,降低库存,预计将带来约4200亿元的降本增益效益。

人工智能是一个非常广泛的领域。人工智能技术涵盖很多大的学科,包括计算机视觉(模式识别、图像处理)、自然语言理解与交流(语音识别)、认知科学、机器人学(机械、控制、设计、运动规划、任务规划等)、机器学习(各种统计的建模、分析和计算的方法)。人工智能产业链条涵盖了基础层、技术层、应用层等多个方面,其辐射范围之大,单一公司无法包揽人工智能产业的每个环节,深耕细分领域和协作整合多个产业间资源的形式成为人工智能领域主要的发展路径。

本书从人工智能的定义入手,前两章阐述了人工智能火热的成因、发展历程、产业链、技术和应用场景,从第3章开始详细阐述人工智能的几个核心技术(大数据、机器学习、深度学习)和最流行的开源平台(TensorFlow)。通过本书,读者既能了解人工智能的方方面面(广度),又能深度学习人工智能的重点技术和平台工具,最终能够将人工智能技术应用到实际工作场景中,共同创建一个智能的时代。

示例代码及相关下载

本书示例代码及其他相关材料可扫描右边的二维码获得。

如果下载有问题或对本书内容有疑问,请联系booksaga@163.com,邮件主题为“人工智能与大数据技术导论”。

致谢

在本书的编写过程中得到了众多的帮助和支持。特别感谢中国科学院的老师们,感谢戴汝为院士和黄玉霞研究员的科学指导和持续鼓励,80多岁高龄的戴老师前不久还远赴广州为我的人工智能研究站台。还要特别感谢我在State University of New York at Stony Brook的老师们,导师帮我确定了本书的三个技术方向(深度学习、大数据、算法),帮我掌舵了人工智能的研究方向。最后感谢我曾经工作了10年的IBM硅谷实验室,从数据管理到大数据再到人工智能,这个实验室一直站在技术的制高点,10年的工作和研究,让我获益匪浅。

除封面署名作者外,参与本书编写的人员还有:沈常胜、邓茂、韦国新、欧阳涛、杨正礼、丁龄嘉、刘毕操、范婷、李招、虞徳坚、杨磊等。由于作者水平有限,书中难免存在纰漏之处,敬请读者批评指正。杨正洪的邮件地址为yangzhenghong@yahoo.com。

杨正洪

2018年9月于San Jose