三、算力
在人工智能的三个基本要素中,算力的提升直接提高了数据的数量和质量,提高了算法的效率和演进节奏,成为推动人工智能系统整体发展并快速应用的核心要素和主要驱动力。
人工智能计算具有并行计算的特征,按照工作负载的特点主要分为训练(Training)和推理(Inference)。传统的通用计算无法满足海量数据并行计算的要求,于是以CPU+GPU为代表的加速计算应运而生并得到了快速的发展,成为当前主流的人工智能算力平台,尤其是在面对训练类工作负载时具有很高的效率和明显的生态优势;推理类工作负载具有实时性要求高、场景化特征强、追求低功耗等特征,在不同的应用场景下呈现明显的差异化,除了GPU加速计算解决方案以外还出现了众多新的个性化算力解决方案,比如:基于FPGA、ASIC、ARM、DSP等架构的定制芯片和解决方案,其计算平台呈现明显的多样化特征。
算力的提升是个系统工程,不仅涉及芯片、内存、硬盘、网络等所有硬件组件,同时也要根据数据类型和应用的实际情况对计算架构、对资源的管理和分配进行优化。目前提升算力的手段主要是两种,一种是与应用无关的,通过对架构和核心组件的创新,提升整体系统的算力水平;另一种是与应用强相关的,通过定制芯片、硬件和系统架构,为某个或某类应用场景和工作负载提供算力。
国际上来看,谷歌发布第二代TPU,Intel通过收购布局人工智能市场,Nvidia不断推出新的GPU产品和软件,微软和AWS率先在云端推出AIaaS服务,美国科技企业以核心技术和创新精神引领着人工智能市场的发展及算力的提升。
目前,中国厂商仍然缺乏算力的核心技术,算力的供给主要还是由服务器厂商将国际厂商的解决方案产品化来实现。但我们也看到,领先的厂商已经开始在芯片、算法框架、应用部署和管理工具等方面加大研发和投入,丰富和加强自己的算力平台,并且已经取得了一定的成果。
伴随算力的提升,尤其是GPU等技术应用于人工智能之后,极大提升了算法的效率和演进的节奏,使产业界看到了人工智能实际应用的可能,推动算法的研究走出实验室,更多地与产业和行业相结合,衍生出丰富的与行业应用和场景相关的算法分支,从而形成了算力、算法和数据的良性互动,促进了人工智能生态的快速发展和繁荣。