Regression analysis
Regression analysis is a statistical modeling technique that is used for predicting or forecasting the occurrence of an event or the value of a continuous variable (dependent variable), based on the value of one or many independent variables. For example, when we want to drive from one place to another, there are numerous factors that affect the amount of time it will take to reach the destination, for example, the start time, distance, real-time traffic conditions, construction activities on the road, and weather conditions. All these factors impact the actual time it will take to reach the destination. As you can imagine, some factors have more impact than the others on the value of the dependent variable. In regression analysis, we mathematically sort out which variables impact the outcome, leading us to understand which factors matter most, which ones do not impact the outcome in a meaningful way, how these factors relate to each other, and mathematically, the quantified impact of variable factors on the outcome.
Various regression techniques that are used depend on the number and distribution of values of independent variables. These variables also derive the shape of the curve that represents predictor function. There are various regression techniques, and we will learn about them in detail in the following sections.