Deep Learning By Example
上QQ阅读APP看书,第一时间看更新

Binning

This kind of quantitative transformation is used to create quantiles. In this case, the quantitative feature values will be the transformed ordered variable. This approach is not a good choice for linear regression, but it might work well for learning algorithms that respond effectively when using ordered/categorical variables.

The following code applies this kind of transformation to the Fare feature:

# Binarizing the features by binning them into quantiles
df_titanic_data['Fare_bin'] = pd.qcut(df_titanic_data['Fare'], 4)

if keep_binary:
df_titanic_data = pd.concat(
[df_titanic_data, pd.get_dummies(df_titanic_data['Fare_bin']).rename(columns=lambda x: 'Fare_' + str(x))],
axis=1)