基于神经网络的监督和半监督学习方法与遥感图像智能解译
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

参考文献

[1] Mitchell T M.Machine Learning[M].NewYork:McGraw-Hill,1997.

[2] Han M,Liu B.Ensemble of extreme learning machine for remote sensing image classification[J].Neurocomputing,2015,149:65-70.

[3] Cambria E,White B.Jumping NLP Curves:A review of natural language processing research[J].IEEE Computational Intelligence Magazine,2014,9(2):48-57.

[4] 周志华,王珏.机器学习及其应用[M].北京:清华大学出版社,2007.

[5] 唐晓亮.基于神经网络的半监督学习方法研究[D].大连理工大学,2009.

[6] King R D,Feng C,Sutherland A.Sutherland C.Statlog:comparison of classification algorithms on large real-world problems[J].Applied Artificial Intelligence,1995,9(3):289-333.

[7] Galar M,Fernández A,Barrenechea E,et al.A review on ensembles for the class imbalance problem:bagging-,boosting-,and hybrid-based approaches[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2012,42(4):463-484.

[8] Schadt E E,Linderman M D,Sorenson J,et al.Computational solutions to large-scale data management and analysis[J].Nature Reviews Genetics,2010,11(9):647-657.

[9] Cover T,Hart P.Nearest neighbor pattern classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.

[10] Goldberg D E,Holland J H.Genetic algorithms and machine learning[J].Machine learning,1988,3(2):95-99.

[11] 席裕庚,柴天佑.遗传算法综述[J].控制理论与应用,1996,13(6):697-708.

[12] Tso B C K,Mather P M.Classification of multisource remote sensing imagery using a genetic algorithm and markov random fields[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(3):1255-1260.

[13] Quinlan J R.Induction of decision trees[J].Machine learning,1986,1(1):81-106.

[14] Valentini G,Masulli F.Ensembles of learning machines[M].Neural Nets.Springer Berlin Heidelberg,2002.

[15] Bühlmann P.Bagging,boosting and ensemble methods[M].Springer Berlin Heidelberg,2012.

[16] Bailly J S,Arnaud M,Puech C.Boosting:A classification method for remote sensing[J].International Journal of Remote Sensing,2007,28(7):1687-1710.

[17] Budka M,Gabrys B.Density preserving sampling:robust and efficient alternative to cross-validation for error estimation[J].IEEE Transactions on Neural Networks and Learning Systems,2013,24(1):22-34.

[18] Dietterich T,Bakiri G.Solving multiclass learning problems via error-correcting out put codes[J].Journal of Artificial Intelligence Research,1995,2:263-286.

[19] Ratner B.Statistical and machine-learning data mining:techniques for better predictive modeling and analysis of big data[M].CRC Press,2011.

[20] Kononenko I.Estimating attributes:analysis and extension of RELIEF[C].Proceedings of the 1994 European Conference on Machine Learning.Amsterdan,Springer,1994:171-182.

[21] Lerman K,Minton S,Knoblock C A.Wrapper maintenance:A machine learning approach[J].Journal of Artificial Intelligence Research,2003,18:149-181.

[22] Hong X,Chen S,Qatawneh A,et al.A radial basis function network classifier to maximise leave-one-out mutual information[J].Applied Soft Computing,2014,23:9-18..

[23] Lowe D G.Similarity metric learning for a variable-kernel classifier[J].Neural Computation 1995,7(1):72-85.

[24] Shahshahani B M,Landgrebe D A.The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J].IEEE Transactions on Geoscience and Remote sensing,1994,32(5):1087-1095.

[25] Miller D J,Uyar H S.A mixture of experts classifier with learning based on both labelled and unlabelled data[C].Proceedings of the 9th Processing Systems on Advances in Neural Information,Cambridge,MA:MIT Press,1997:571-577.

[26] Patra S,Bruzzone L.A fast cluster-assumption based active-learning technique for classification of remote sensing images[J].IEEE Transactions on Geoscience and Remote sensing,2011,49(5):1617-1626.

[27] Maulik U,Chakraborty D.Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote sensing,2013,77:66-78.

[28] Joachims T.Transductive inference for text classification using support vector machines[C].Proceedings of the 16th International Conference on Machine Learning.Morgan Kaufmann Publishers Inc,1999:200-209.

[29] Lawrence N D,Jordan M I.Semi-supervised learning via Gaussian processes[C].Proceedings of 17th Advances Conference on Neural Information Processing Systems,Cambridge,MA:MIT Press,2005:753-760.

[30] Grandvalet Y,Bengio Y.Semi-supervised learning by entropy minimization[C].Proceedings of 17th Advances Conference on Neural Information Processing Systems,Cambridge,MA:MIT Press,2005:529-536.

[31] Tuia D,Volpi M,Trolliet M,et al.Semisupervised manifold alignment of multimodal remote sensing images[J].IEEE Transactions on Geoscience and Remote sensing,2014,52(12):7708-7720.

[32] Zhu X,Ghahramani Z,Lafferty J.Semi-supervised learning using Gaussian fields and harmonic functions[C].Proceedings of the 20th International Conference on Machine Learning,Washington,DC,2003:912-919.

[33] Zhou D,Bousquet O,Lal T N,et al.Learning with local and global consistency[C].Proceedings of 16th Advances Conference on Neural Information Processing Systems,Cambridge,MA:MIT Press,2004:321-328.

[34] Reitmaier T,Calma A,Sick B.Transductive active learning a new semi-supervised learning approach based on iteratively refined generative models to capture structure in data [J].Information Sciences,2015,293:275-298.

[35] McLachlan G J,Krishnan T.The EM algorithm and extensions [M].New Jersey:John Wiley and Sons,2007.

[36] 周鑫.基于EM算法的G0分布参数最大似然估计[J].电子学报,2013,41(1):178-184.

[37] Tang X,Han M.Semi-supervised Bayesian artmap[J].Applied Intelligence,2010,33(3):302-317.

[38] Mumtaz A,Coviello E,Lanckriet G R,et al.Clustering dynamic textures with the hierarchical EM algorithm for modeling video[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,35(7):1606-1621.

[39] Moser G,Zerubia J,Serpico S B.Dictionary-based stochastic expectation-maximization for SAR amplitude probability density function estimation[J].IEEE Transactions on Geoscience and Remote sensing,2006,44(1):188-200.

[40] Saint-Jean C,Frelicot C.A robust semi-supervised EM-based clustering algorithm with a reject option[C].Proceedings of International Conference on Pattern Recognition,2002,16(3):399-402.

[41] Amini M R,Gallinari P.Semi-supervised learning with an imperfect supervisor[J].Knowledge and Information Systems,2005,8(4):385-413.

[42] Come E,Oukhellou L,Denoeux T,et al.Learning from partially supervised data using mixture models and belief functions[J].Pattern Recognition,2009,42(3):334-348.

[43] Constantinopoulos C,Likas A.Semi-supervised and active learning with the probabilistic RBF classifier[J].Neurocomputing,2008,71(13):2489-2498.

[44] Zhang Y,Wen J,Wang X,et al.Semi-supervised learning combining co-training with active learning[J].Expert Systems with Applications,2014,41(5):2372-2378.

[45] Zhang X,Song Q,Liu R,et al.Modified co-training with spectral and spatial views for semi-supervised hyperspectral image classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote sensing,2014,7(6):2044-2055.

[46] Goldman S,Zhou Y.Enhancing supervised learning with unlabeled data[C].Proceedings of the 17th International Conference on Machine Learning,San Francisco,CA,2000:327-334.

[47] Li K,Zhang J,Xu H,et al.A semi-supervised extreme learning machine method based on co-training[J].Journal of Computational Information Systems,2013,9(1):207-214.

[48] Zhou Z H,Li M.Tri-training:Exploiting unlabeled data using three classifiers[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(11):1529-1541.

[49] Tang X L,Han M.Ternary reversible extreme learning machines:the incremental tri-training method for semi-supervised classification[J].Knowledge and information systems,2010,23(3):345-372.

[50] Zhang X,Bai B,Li Y.Tri-training based on neural network ensemble algorithm[M].Intelligent Science and Intelligent Data Engineering.Springer Berlin Heidelberg,2012:43-49.

[51] Angluin D,Laird P.Learning from noisy examples[J].Machine Learning,1988,2(4):343-370.

[52] Li M.Zhou Z H.Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples[J].IEEE Transactions on Systems,Man,and Cybernetics Part A:Systems and Humans,2007,37(6):1088-1098.

[53] Srijith P K,Shevade S,Sundararajan S.Semi-supervised Gaussian process ordinal regression[M].Machine Learning and Knowledge Discovery in Databases.Springer Berlin Heidelberg,2013:144-159.

[54] Szummer M,Jaakkola T S.Information regularization with partially labeled data[C].Proceedings of 14th Advances Conference on Neural Information Processing Systems,2002:1025-1032.

[55] Grandvalet Y,Bengio Y.Semi-supervised learning by entropy minimization[C].Proceedings of 17th Advances Conference on Neural Information Processing Systems,2005:529-536.

[56] Chen Y S,Wang G P.Dong S H.Learning with progressive transductive support vector machine[J].Pattern Recognition Letters,2003.24(12):1845-1855.

[57] Bruzzone L,Chi M M,Marconcini M.A novel transductive SVM for semisupervised classification of remote-sensing images[J].IEEE Transactions on Geoscience and Remote sensing,2006,44(11):3363-3373.

[58] Zhang R,Wang W J,Ma Y C,et al.Least square transduction support vector machine[J].Neural Processing Letters,2009,29(2):133-142.

[59] Li Y Q,Guan C T.Joint feature re-extraction and classification using an iterative semi-supervised support vector machine algorithm[J].Machine Learning,2008,71(1):33-53.

[60] Adankon M M,Cheriet M.Learning semi-supervised SVM with genetic algorithm[C].Proceedings of International Joint Conference on Neural Networks,Orlando,FL,2007:1825-1830.

[61] Adankon M M,Cheriet M.Help-Training for semi-supervised support vector machines[J].Pattern Recognition,2011,44(9):2220-2230.

[62] 李宇峰,黄圣君,周志华.一种基于正则化的半监督多标记学习方法[J].计算机研究与发展,2012,49(6):1272-1278.

[63] Maulik U,Chakraborty D.Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J].ISPRS Journal of Photogrammetry and Remote sensing,2013,77:66-78.

[64] Blum A,Lafferty J,Rwebangira M R,et al.Semi-Supervised Learning Using Randomized Mincuts[C].Proceedings of International Conference on Machine Learning,2004:97-104.

[65] Lezoray O,Elmoataz A,Bougleux S.Graph regularization for color image processing[J].Computer Vision and Image Understanding,2007,107(1):38-55.

[66] Faigle U,Schonhuth A.Efficient tests for equivalence of hidden Markov processes and quantum random walks[J].IEEE Transactions on Information Theory,2011,57(3):1746-1753.

[67] Camps-Valls G T.Marsheva V B,Zhou D Y.Semi-supervised graph-based hyperspectral image classification[J].IEEE Transactions on Geoscience and Remote sensing,2013,45(10),3044-3054.

[68] Camps-Valls G,Shervashidze N,Borgwardt K M.Spatio-spectral remote sensing image classification with graph kernels[J].IEEE Geoscience and Remote sensing Letters,2010,7(4):741-745.

[69] Kim W,Crawford M M,Ghosh J.Spatially adapted manifold learning for classification of hyperspectral imagery with insufficient labeled data[C] Proceedings of IEEE International Geoscience and Remote sensing Symposium(IGARSS),2008,1:213-216.

[70] Urahama K.Semi-supervised classification with spectral subspace projection of data[J].IEICE Transactions on Information and Systems,2007,90(1):374-377.

[71] Wang H J,Nie R H,Liu X N,et al.Constraint projections for semi-supervised affinity propagation[J].Knowledge-Based Systems,2012,36:315-321.

[72] Gong Y C,Chen C L.Semi-supervised method for gene expression data classification with Gaussian fields and Harmonic functions[C].Proceedings of 9th International Conference on Pattern Recognition(ICPR),Tampa,FL,2008:1-4.

[73] Li C H,Kuo B C,Lin C T,et al.A spatial-contextual support vector machine for remotely sensed image classification[J].IEEE Transactions on Geoscience and Remote sensing,50(3),784-799.

[74] Kulis B,Basu S,Dhillon I,et al.Semi-supervised graph clustering:a kernel approach[J].Machine Learning,2009,74(1):1-22.

[75] Yang W Y,Zhang S W,Liang W.A graph based subspace semi-supervised learning framework for dimensionality reduction[J].The 10th European Conference on Computer Vision,Marseille,France,2008:664-677.

[76] Zhong E H,Xie S H,Fan W,et al.Graph-based iterative hybrid feature selection[C].Proceedings of the 8th IEEE International Conference on Data Mining,Pisa,Italy,2008:1133-1138.

[77] Rohban M H,Rabiee H R.Supervised neighborhood graph construction for semi-supervised classification[J].Pattern Recognition,2012,45(4):1363-1372.

[78] Wang M,Hua X S,Tang J H,et al.Beyond distance measurement:constructing neighborhood similarity for video annotation[J].IEEE Transactions on Multimedia,2009,11(3):465-476.

[79] Han M,Zhu X,Yao W.Remote sensing image classification based on neural network ensemble algorithm[J].Neurocomputing,2012,78(1):133-138.

[80] Mather P,Koch M.Computer processing of remotely-sensed images:an introduction[M].John Wiley&Sons,2011.

[81] 韩敏.水文与水管理中的遥感技术[M].北京:中国水利水电出版社,2006.

[82] Gitelson A A,Peng Y,Arkebauer T J,et al.Relationships between gross primary production,green LAI,and canopy chlorophyll content in maize:Implications for remote sensing of primary production[J].Remote sensing of Environment,2014,144:65-72.

[83] 罗小波.遥感图像智能分类及其应用[M].北京:电子工业出版社,2011.

[84] Mather P,Tso B.Classification methods for remotely sensed data[M].CRC press,2009.

[85] Stanley J N,Lamb D W,Irvine S E,et al.Effect of aluminum neutron probe access tubes on the apparent electrical conductivity recorded by an electromagnetic soil survey sensor[J].IEEE Geoscience and Remote sensing Letters,2014,11(1):333-336.

[86] Shi Q,Du B,Zhang L.Spatial coherence-based batch-mode active learning for remote sensing image classification[J].IEEE Transactions on Image Processing,2015,24(7):2037-2050.

[87] Wan L,Tang K,Li M,et al.Collaborative active and semi-supervised learning for hyperspectral remote sensing image classification[J].IEEE Transactions on Geoscience and Remote sensing,2015,53(5):2384-2396.

[88] Agrawal R K,Bawane N G.Multiobjective PSO based adaption of neural network topology for pixel classification in satellite imagery[J].Applied Soft Computing,2015,28:217-225.

[89] 韩敏,程磊,唐晓亮.Fuzzy ARTMAP神经网络在土地覆盖分类中的应用研究[J].中国图象图形学报,2005,10(4):415-419.

[90] Wang W,Sun X,Zhang R,et al.Multi-layer perceptron neural network based algorithm for estimating precipitable water vapour from MODIS NIR data[J].International Journal of Remote sensing,2006,27(3):617-621.

[91] Poth A,klaus D,et al.Optimization At Multi-Spectral Land Cover Classification With Fuzzy Clustering And The Kohonen Feature Map[J].International Journal of Remote sensing,2001,22(8):1423-1439.

[92] Bakos K L,Gamba P.Hierarchical Hybrid Decision Tree Fusion of Multiple Hyperspectral Data Processing Chains[J].IEEE Transactions on Geoscience and Remote sensing,2011,49(1):388-394.

[93] Broomhead D S,Lowe D.Multivariable functional interpolation and adaptive networks[J].Complex systems[J],1988,2:321-355.

[94] Cover T M.Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[J].IEEE Transactions on Electronic Computers,1965,(3):326-334.

[95] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.

[96] Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers[C].Proceedings of the 5th annual workshop on Computational learning theory.ACM,1992:144-152.

[97] Cortes C,Vapnik V.Soft margin classifier.Technical Memorandum[T],AT&T Bell Labs,1993.

[98] Vapnik V.The nature of statistical learning theory[M].Springer,2000.

[99] Li B,Ou S.Intelligent recognition of lung nodule combining rule-based and C-SVM classifiers[J].International Journal of Computational Intelligence Systems,2011,4(5):960-976.

[100] Bai J,Xue P,Zhang X,et al.Parameters optimization and application research of v-support vector machine[J].International Journal of Advancements in Computing Technology,2013,5(3):180-189.

[101] Zheng S,Shi W,Liu J,et al.Remote sensing image fusion using multiscale mapped LS-SVM[J].IEEE Transactions on Geoscience and Remote sensing,2008,46(5):1313-1322.

[102] Muñoz-Marí J,Bovolo F,Gómez-Chova L,et al.Semisupervised one-class support vector machines for classification of remote sensing data[J].IEEE Transactions on Geoscience and Remote sensing,2010,48(8):3188-3197.

[103] Yuan J,Chen Y,Yang X.Advances in Intelligent&Soft Computing[M].Springer Berlin Heidelberg,2011.

[104] Zhong X,Li J,Dou H,et al.Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image[J].PloS one,2013,8(7):1-17.

[105] Chang C C,Pao H K,Lee Y J.An RSVM based two-teachers–one-student semi-supervised learning algorithm[J].Neural Networks,2012,25:57-69.

[106] Shen J D.A new smooth support vector machine based on a rational function[J].Applied Mechanics and Materials,2013,263:2199-2202.

[107] Grossberg S.Adaptive resonance theory[J].Scholarpedia,2013,8(5):1569.

[108] Parsons O,Carpenter G A.ARTMAP neural networks for information fusion and data mining:map production and target recognition methodologies[J].Neural Networks,2003,16(7):1075-1089.

[109] Palaniappan R,Paramesran R,Nishida S,et al.A new brain-computer interface design using fuzzy ARTMAP[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2002,10(3):140-148.

[110] Rubin M A.Application of fuzzy ARTMAP and ART-EMAP to automatic target recognition using radar range profiles[J].Neural Networks,1995,8(7):1109-1116.

[111] Downs J,Harrison R F,Kennedy R L,et al.Application of the fuzzy ARTMAP neural network model to medical pattern classification tasks[J].Artificial Intelligence in Medicine,1996,8(4):403-428.

[112] Aggarwal R K,Xuan Q Y,Johns A T,et al.A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy ARTmap neural networks[J].IEEE Transactions on Neural Networks,1999,10(5):1214-1221.

[113] Tan S C,Rao M V C,Lim C P.A hybrid neural network classifier combining ordered fuzzy ARTMAP and the dynamic decay adjustment algorithm[J].Soft Computing,2008,12(8):765-775.

[114] Carpenter G A,Markuzon N.ARTMAP-IC and medical diagnosis:Instance counting and inconsistent cases[J].Neural Networks,1998,11(2):323-336.

[115] Tan S C,Rao M V C,Lim C P.An online pruning strategy for supervised ARTMAP-based neural networks[J].Neural Computing&Applications,2009,18(4):387-395.

[116] Charalampidis D,Kasparis T,Georgiopoulos M.Classification of noisy signals using fuzzy ARTMAP neural networks[J].IEEE Transactions on Neural Networks,2001,12(5):1023-1036.

[117] Koufakou A,Georgiopoulos M,Anagnostopoulos G,et al.Cross-validation in Fuzzy ARTMAP for large databases[J].Neural Networks,2001,14(9):1279-1291.

[118] Gomez-Sanchez E,Dimitriadis Y A,Cano-Izquierdo J M,et al.mu-ARTMAP:Use of mutual information for category reduction in Fuzzy ARTMAP[J].IEEE Transactions on Neural Networks,2002,13(1):58-69.

[119] Vakil-Baghmisheh M T,Pavešic'N.A fast simplified fuzzy ARTMAP network[J].Neural Processing Letter,2003,17(3):273-316.

[120] Williamson J R.Gaussian ARTMAP:A neural network for past incremental learning of noisy multidimensional maps[J].Neural Networks,1996,9(5):881-897.

[121] Muchoney D,Williamson J.A Gaussian adaptive resonance theory neural network classification algorithm applied to supervised land cover mapping using multitemporal vegetation index data[J].IEEE Transactions on Geoscience and Remote sensing,2001,39(9):1969-1977.

[122] Vigdor B,Lerner B.The Bayesian ARTMAP[J].IEEE Transactions on Neural Networks,2007,18(6):1628-1644.

[123] Wang X,Han M.Improved extreme learning machine for multivariate time series online sequential prediction[J].Engineering Applications of Artificial Intelligence,2015,40:28-36.

[124] 韩红桂,乔俊飞,薄迎春.基于信息强度的 RBF 神经网络结构设计研究[J].自动化学报,2012,38(7):1083-1090.

[125] Chang N,Han M,Yao W,et al.Change detection of land use and land cover in an urban region with SPOT5 images and partial Lanczos extreme learning machine[J].Journal of Applied Remote sensing,2010,4(1):2816-2832.

[126] Samat A,Gamba P,Du P,et al.Active extreme learning machines for quad-polarimetric SAR imagery classification[J].International Journal of Applied Earth Observation and Geoinformation,2015,35:305-319.

[127] Li S,Wang P,Goel L.Short-term load forecasting by wavelet transform and evolutionary extreme learning machine[J].Electric Power Systems Research,2015,122:96-103.

[128] Wei X K,Li Y H.Linear programming minimum sphere set covering for extreme learning machines[J].Neurocomputing,2008,71(4):570-575.

[129] 张弦,王宏力.限定记忆极端学习机及其应用[J].控制与决策,2012,27(8):1206-1210.

[130] Şahin M,Kaya Y,Uyar M,et al.Application of extreme learning machine for esti-mating solar radiation from satellite data [J].International Journal of Energy Re-search,2014,38(2):205 212.

[131] Tang X L,Han M.Partial Lanczos extreme learning machine for single-output regression problems[J].Neurocomputing,2009,72(13),3066-3076.

[132] 李凡军,韩红桂,乔俊飞.基于灵敏度分析法的 ELM 剪枝算法[J].控制与决策,2014,29(6):1003-1008.

[133] Lim J S,Lee S,Pang H S.Low complexity adaptive forgetting factor for online sequential extreme learning machine(OS-ELM)for application to nonstationary system estimations[J].Neural Computing and Applications,2013,22(3-4):569-576.

[134] 丛爽,王怡雯.随机神经网络发展现状综述[J].控制理论与应用,2005,21(6):975-980.

[135] Gelenbe E.Introduction to the special issue on G-Networks and the random neural network[J].Performance Evaluation,2011,68(4):307-308.

[136] Sheng C,Zhao J,Liu Y,et al.Prediction for noisy nonlinear time series by echo state network based on dual estimation[J].Neurocomputing,2012,82:186-195.

[137] Wojcik G M.Electrical parameters influence on the dynamics of the Hodgkin-Huxley liquid state machine[J].Neurocomputing,2012,79:68-74.

[138] Zhang B,Miller D J,Wang Y.Nonlinear system modeling with random matrices:echo state networks revisited[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(1):175-182.

[139] 宋彤,李菡.基于小波回声状态网络的混沌时间序列预测[J].物理学报,2012,61(8):90-96.

[140] Yildiz L B,Jaeger H,Kiebel S J.Re-visiting the echo state property[J].Neural Networks,2012,35:1-9.

[141] Steil J J.Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning[J].Neural Networks,2007,20(3):353-364.

[142] Haykin S.Neural networks:a comprehensive foundation[M].Englewood Cliffs,NJ:Prentice Hall,2007.

[143] 张学清,梁军.基于EEMD-近似熵和储备池的风电功率混沌时间序列预测模型[J].物理学报,2013,62(5):1-10.

[144] 彭宇,王建民,彭喜元.基于回声状态网络的时间序列预测方法研究[J].电子学报,2010,38(2A):148-154.

[145] Buehner M,Young P.A tighter bound for the echo state property[J].IEEE Transactions on Neural Networks,2006,17(3):820-824.

[146] 韩敏.基于储备池的非线性系统预测理论与分析方法[M].北京:中国水利水电出版社,2011.