第1章 绪论
1.1 启发式优化方法
优化是一个具有普遍适用性的工程数学问题,也是一个非常活跃的研究领域,它探索给定问题的最优解。传统的优化方法主要有动态规划法、共轭梯度法、分支界定法、牛顿法、拉格朗日乘子法等,但这些精确的确定性数值优化方法在面对大规模、复杂性问题时,难以在有效时间内得出合理解。而现代元启发式算法使用目标函数而不是传统的基于微积分方法和枚举策略,且使用概率而不是确定性规则,能够快速解决大规模复杂性问题,并得到满意解。与确定性方法相比,元启发式算法有更多的机会找到更好的优化问题解决方案,是目前优化领域最常用的有效方法之一。
经典的元启发式算法有模拟飞鸟集群觅食行为的粒子群算法(particle swarm optimization,PSO),受蚂蚁在寻找食物过程中释放信息素发现路径行为启发的蚁群算法(ant colony optimization,ACO),借鉴自然界生物进化过程的遗传算法(genetic algorithm,GA),模拟固体物质退火过程的模拟退火算法(simulated annealing,SA),等等。近年来,科学家对于启发式智能优化算法的研究十分活跃,相继提出多个机制各异、性能优越的新算法,如模拟蝙蝠利用声呐来探测猎物、避开障碍物的蝙蝠算法(bat algorithm,BA),受布谷鸟寄生育雏行为启发的布谷鸟搜索算法(cuckoo search algorithm,CSA),模拟萤火虫通过自身发光特性交换信息的萤火虫算法(firefly algorithm,FA),模拟自然界中万有引力现象的万有引力搜索算法(gravitational search algorithm,GSA),受到自然界中花朵授粉过程启发的花朵授粉算法(flower pollination algorithm,FPA),受灰狼群体等级制度和捕食行为启发的灰狼优化算法(grey wolf optimizer,GWO),受座头鲸特殊捕食行为启发的鲸鱼优化算法(whale optimization algorithm,WOA),受樽海鞘在海洋中游弋和觅食行为启发的樽海鞘群算法(salp swarm algorithm,SSA),等等。这些新算法的不断提出和持续改进为启发式优化算法的研究与应用增添了新的活力,相关算法已被广泛应用于路径规划、数据聚类、工程设计、图像分割、财务预测、任务分配、资源管理、能源系统等诸多领域。
但与此同时,由NFL(no free lunch)定理可知,没有任何一个算法可以解决所有优化问题。这意味着一个算法在解决一组问题上表现很好,却并不一定能解决另外一组优化问题。启发式算法或多或少存在求解不够稳定、收敛速度较慢、寻优精度不高、易陷入局部极值、问题和维度适应性较弱等问题。因此,启发式算式需要经过大量的机制探讨、实验测试、统计分析,不断地研究、改进、完善和应用;同时,不断地探新扬弃、去粗取精也为启发式算法解决大规模复杂优化问题提供了良好的思路与方案,吸引着大量国内外学者的关注与研究。