从零构建知识图谱:技术、方法与案例
上QQ阅读APP看书,第一时间看更新

1.5 知识图谱的典型应用

我们在前文中已经接触到了知识图谱对搜索引擎的成功应用。知识图谱为搜索提供了丰富的结构化结果,体现了信息和知识的关联,可以通过搜索直接得到答案。除了通用搜索引擎之外,在一些特定领域中,知识图谱也发挥着重要作用,例如同花顺公司的问财系统[1]、文因互联的文因企业搜索[2]等。

在医疗领域,为了降低发现新药的难度,Open Phacts[3]联盟构建了一个发现平台,通过整合来自各种数据源的药理学数据,构建知识图谱,来支持药理学研究和药物发现。IBM Waston[4]通过构建医疗信息系统,以及一整套的问答和搜索框架,以肿瘤诊断为核心,成功应用于包括慢病、医疗影像、体外检测在内的九大医疗领域。其第一步商业化运作是打造了一个肿瘤解决方案(Waston for Oncology),通过输入纪念斯隆·凯特琳癌症中心[5]的数千份病例、1500万页医学文献,可以为不同的肿瘤病人提供个性化治疗方案,连同医学证据一起推荐给医生。

在投资研究领域,成立于2010年的AlphaSense[6]公司打造了一款新的金融知识引擎。与传统的金融信息数据平台不同,这款知识引擎并不仅仅局限在金融数据的整合和信息平台的范围,而是通过构建知识图谱,加上自然语言处理和语义搜索引擎,让用户可以更方便地获取各种素材并加工再使用。另外一款非常具有代表性的金融知识引擎是Kensho[7]。它通过从各种数据源搜集信息,构建金融知识图谱,并关注事件和事件之间的依赖,以及对结果的关联和推理,从而可为用户提供自动化语义分析、根据特定行情判断走势等功能。

在政府管理和安全领域,一个具有代表性的案例是Palantir[8],因通过大规模知识图谱协助抓住了本·拉登而声名大噪。其核心技术是整理、分析不同来源的结构化和非结构化数据,为相关人员提供决策支持。例如在军事情报分析系统中,将多源异构信息进行整合,如电子表格、电话、文档、传感器数据、动态视频等,可以对人员、装备、事件进行全方位实时的监控分析,使调度人员第一时间掌握战场态势,并做出预判。除了协助抓住本·拉登,Palantir的另外一项赫赫有名的成就是协助追回了前纳斯达克主席麦道夫金融欺诈案的数十亿美金。

在电商领域,阿里巴巴生态积聚了海量的商品和交易数据,它以商品、产品、品牌和条码为核心,构建了百亿级别的商品知识图谱,可以广泛应用于搜索、导购、平台治理、智能问答等业务,同时保持每天千万级别的恶意攻击拦截量,极大提升了消费者的购物体验。

在聊天机器人领域,具有问答功能的产品,例如Siri、微软小冰、公子小白、琥珀·虚颜、天猫精灵、小米音箱,背后均有大规模知识图谱的支持。例如在琥珀·虚颜中,除了有通用百科知识图谱——“七律”的支持,还有子领域,例如动漫知识图谱、美食知识图谱、星座知识图谱的支持。图1-13给出了公子小白在多类别知识图谱融合后的一个问答对话示例。

000

图1-13 公子小白对话示例


[1] http://www.iwencai.com/。

[2] http://search.memect.cn/。

[3] https://www.openphacts.org/。

[4] https://www.ibm.com/watson-health。

[5] https://www.mskcc.org/。

[6] https://www.alpha-sense.com/。

[7] https://www.kensho.com/。

[8] https://www.palantir.com/。