上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
第3章 分数阶实混沌系统和复混沌系统的自适应同步控制研究
3.1 概述
分数阶混沌系统是典型的分数阶非线性系统,混沌运动是一种非周期有界动态运动,是在确定性系统中出现的类随机过程。分数阶混沌系统是国内外学者的研究热点,混沌系统的同步研究在保证信号安全方面具有重要意义。目前,大部分研究成果局限于分数阶实混沌系统,事实上,分数阶复混沌系统可以用于描述很多物理现象,如粒子分布倒置、失谐激光系统、液体流动的热对流现象等。
在大部分分数阶混沌系统的同步研究中,系统参数都是精确已知的。然而,在根据实际系统进行数学建模的过程中,很多系统参数不可能精确已知,这些未知参数可能会影响系统同步,因此在实现两个混沌系统的同步时必须考虑未知参数的影响。在很多物理系统中,驱动系统和响应系统以恒定的交角向不同方向演化,因此,与传统的简单同步相比,应重点研究复杂修正投影同步,以提高信息的保密性。可以将复杂修正投影同步看作完全同步、反同步、投影同步、修正投影同步的一般形式。目前,分数阶系统的复杂修正投影同步方面的研究还很少。
本章主要考察具有未知参数的分数阶系统的复杂修正投影同步问题,以及外界扰动项对系统的影响。因为整数阶系统稳定理论不能直接应用于分数阶系统,所以本章在分数阶系统稳定性分析中,引入频率分布模型,使用间接Lyapunov函数进行稳定性分析,分析过程可靠合理。