图1.1 CFD辅助内燃机研发的过程
图2.1 二冲程单缸发动机放热率曲线(黑色)和喷油率曲线(蓝色)。喷油持续期为1.5ms
[Tg=870K,ρg=22.8kg/m3,O2=21%(体积分数)]
图2.2 工况与图2.1一致条件下的纹影图像。竖直蓝色线和红色线分别表示液相长度和火焰浮起长度
图2.3 柴油喷雾雾化示意图[24]
图2.4 喷雾区域示意图[25]
图2.5 不同种类的二次破碎示意图[39]
图2.6 非燃烧状态下的液相长度和喷雾贯穿距[55]
图2.7 喷孔直径和喷油压力对液相长度的影响[43]
图2.8 喷雾贯穿距和喷雾锥角定义
图2.9 着火过程中的甲醛PLIF(左侧)和纹影图像(右侧)[14]
图2.10 直喷式柴油机混合控制燃烧阶段概念模型[15]
图2.11 碳烟生成过程示意图[107]
图2.12 柴油机火焰中碳烟生成、氧化过程的概念模型[87,9]
图2.13 回火过程的纹影图像[13]
图2.14 直喷式柴油机喷雾燃烧过程和对应的光学诊断技术
图3.1 热电偶测量预混火焰温度
图3.2 光学发动机中多重光学诊断技术同步测量示意图
图3.3 乙烯和空气的预混火焰
图3.4 纹影法光路布置和所测结果示意图[2]
图3.6 江苏大学的定容燃烧弹
图3.7 Sandia实验室定容燃烧弹缸内压力变化曲线[8]
图3.8 几个研究机构的定容燃烧弹
图3.9 CMT实验室的连续流动定压燃烧弹及其剖视图
图3.10 美国Sandia实验室的一款四冲程重型光学发动机
图4.1 不同尺寸粒子的米散射强度示意图
图4.2 ECN组织不同机构米散射光路布置示意图[1]
图4.4 燃烧弹中多孔喷油器米散射光路布置示意图
图4.5 多孔喷雾米散射图片处理划分
图4.8 喷雾轴线上的光学厚度分布[5]
图4.9 “Z”形纹影技术布置
图4.10 单孔柴油喷雾纹影布置示意图[7]
图4.11 单孔柴油喷雾纹影图像
图4.12 多孔喷油器双通路纹影光路及其拍摄结果
a)双通路纹影光路 b)拍摄结果
图4.13 纹影喷雾“平均轮廓”图像处理步骤[8]
图4.14 二冲程光学发动机紫外光消光法
图4.15 纹影法和紫外光消光法测试结果的比较
图4.16 PIV测试原理示意图
图4.17 PIV测试系统示意图
图4.18 跨帧CCD相机曝光信号与激光脉冲信号时间序列[16]
图4.20 PIV实验速度场分布[27]
a)横风速度分布 b)汽油喷雾速度场分布
图4.21 基于PIV和LIF的喷雾速度测量[28]
a)喷雾整体结构 b)局部放大 c)气相及液相的两相速度分布
图5.1 瑞利散射试验光路布置图
图5.3 PLIF实验光学装置原理图
图5.4 激光,PLIF信号和ICCD相机拍摄门宽之间的时序示意图
图5.6 不同缸内温度下荧光强度修正曲线
a) 天津大学[9] b)威斯康星大学[8] c) 埃因霍温理工大学[11]
图5.7 温度不均匀性修正迭代流程[9]
图5.8 荧光光谱以及带通滤波片的透射率
图5.9 示踪粒子浓度与辐射光强的标定曲线
a)3PN产生的SL b)3PN产生的Ss c)1MN产生的SL d)1MN产生的Ss
图5.10 LAS测试原理示意图[17]
图5.12 LAS实验装置布置示意图
图5.13 不同燃料的吸收光谱[22]
图5.16 通过LAS测得的液相与气相燃油浓度分布示例
图6.1 高速自然发光法示意图
图6.2 高速自然发光法图片示例(环境温度750K)
注:图像左上角数值所示为图片灰色区域内最大灰度值[1]
图6.3 两种环境温度(900K,750K)
注:下灰色区域最大强度值随时间变化[1]
图6.4 燃烧状态下的高速纹影光路
图6.6 纹影法定义着火延迟期示意图
图6.7 化学发光法光路示意图
图6.8 OH*化学发光图像和火焰浮起长度获得方法[11]
图6.9 甲醛/PAH-PLIF和对应工况下的纹影图
图7.1 双色法实验布置示意图
a)单个相机+立体镜 b)两个相机同步拍摄
图7.2 彩色高速数码相机芯片上的颜色过滤矩阵[4]
图7.3 燃烧弹中钨带灯进行双色法标定
图7.4 燃烧弹中钨带灯进行双色法标定
图7.5 双色法波长在550nm和650nm的求解区域[14]
图7.6 激光诱导炽光法中传热、传质过程示意图[15]
图7.7 立体角定义
图7.8 激光诱导炽光法光路布置示意图
图7.9 LII信号强度和碳烟温度与激光能量密度的关系[15]
图7.10 柴油火焰中碳烟浓度二维分布[17]
a)瞬态下的碳烟浓度二维分布和连续点激光相对喷油器的位置 b)喷油过程中光电二极管捕捉到的点激光强度以及对应的KLLEM值
b)喷油过程中光电二极管捕捉到的点激光强度以及对应的KLLEM值
图7.11 消光法原理示意图
图7.12 定容燃烧弹和光学发动机中LEM实验布置图[23]
a)燃烧弹 b)光学发动机
图7.13 倒拖工况下和对应燃烧工况下激光投影到屏幕上的图像[23]
a)倒拖工况 b)燃烧工况
图7.14 LEM喷雾轴线测量[14]
图7.15 DBI光学布置示意图
图7.16 LED灯打开、关闭相邻两张照片示例
图7.18 背景光分别为蓝光和绿光而得到的KL分布比值(KL蓝光/KL绿光)[25]
图7.19 CER技术原理示意图[26]
图7.20 CER技术光路示意图
图7.21 三种工况下DBI和LEM喷雾轴线上KL值比较[27]
图7.22 三种工况下DBI和双色法喷雾轴线上的KL值比较(4000μs ASOE)[27]
a)LS b)MS c)HS
图8.1 光路布置示意图
图8.2 三种燃料的状态关系(Tg=900K,ρg=22.8kg/m3)实线表示C12H26非燃烧工况
a)为温度与混合分数的关系 b)为密度与混合分数的关系
图8.3 纹影图像处理得到的非燃烧和燃烧工况下喷雾贯穿距、贯穿距比值和贯穿速度,竖直虚线表示着火时刻(Spray A工况)
a)喷雾贯穿距 b)贯穿距比值 c)贯穿速度
图8.4 非燃烧工况下由式(8-2)得到的理论k值与实验拟合值的比较。喷雾锥角θ=24°
图8.5 不同时刻下燃烧喷雾纹影轮廓和非燃烧与燃烧喷雾径向宽度(SprayA工况)
a)纹影轮廓 b)径向宽度
图8.6 Spray A工况下燃烧与非燃烧喷雾的径向半径(喷雾贯穿距97mm)
图8.7 Spray A工况下燃烧与非燃烧喷雾轮廓的线性拟合
图8.8 Spray A工况下燃烧与非燃烧喷雾的锥角
图8.9 Spray A工况下燃油特性对喷雾贯穿速度的影响。竖直虚线为试验着火时刻
a)贯穿距 b)试验贯穿速度 c)模拟贯穿速度
图8.10 燃油特性对试验常数k的影响
图8.11 环境气体温度、氧体积分数和喷油压力对喷雾贯穿速度k值的影响。实心图标为试验值,空心图标为模拟值
a)温度 b)氧体积分数 c)喷油压力
图8.12 不同环境温度和氧含量局部燃烧与非燃烧密度比和混合分数的函数关系。燃油PRF0,密度ρg=22.8kg/m3
图8.13 一维模型计算得到的喷雾贯穿速度的k值与试验值的比较
图8.14 ΔR随环境温度氧体积分数和喷油压力的变化。实线表示试验值,虚线表示模拟值
a)环境温度 b)氧体积分数 c)喷油压力
图8.15 燃油特性对的影响
图8.16 CER实验布置示意图
图8.17 OH*层析重建图像和原始图像(pinj=150MPa,ρg=22.8kg/m3,Tg=1000K,[O2]=15%)
a)重建图像 b)原始图像
图8.18 IXT图像示例。竖直黑色虚线表示碳烟时间平均的区间
a)pinj=150MPa,ρg=22.8kg/m3,Tg=1000K,[O2]=15%b)pinj=100MPa,ρg=22.8kg/m3,Tg=900K,[O2]=15%
b)pinj=100MPa,ρg=22.8kg/m3,Tg=900K,[O2]=15%
图8.19 不同消光波长下距离喷雾轴线1mm处轴向温度的分布和距离喷嘴65mm处径向温度分布(pinj=150MPa,ρg=22.8kg/m3,Tg=1000K,[O2]=15%)
a)轴向温度分布 b)径向温度分布
图8.20 消光波长和辐射波长都为660nm时的信噪比(pinj=150MPa,ρg=22.8kg/m3,Tg=1000K,[O2]=15%)
图8.21 不同辐射波长下距离喷雾轴线1mm处轴向温度的分布和距离喷嘴65mm处径向温度分布(pinj=150MPa,ρg=22.8kg/m3,Tg=1000K,[O2]=15%)
a)轴向温度分布 b)径向温度分布
图8.22 假设的在喷雾中心对称面上K的分布和投影的辐射强度,以及在喷雾中心对称面假设的和重建的碳烟温度分布
a)辐射强度 b)温度
图8.23 重建的碳烟体积分数和碳烟温度与原始输入数据的关系
a)碳烟体积分数 b)碳烟温度
图8.24 火焰对称面碳烟体积分数(fv)和温度(T)分布。竖直虚线表示火焰浮起长度,红色曲线表示OH*轮廓
a)pinj=150MPa,ρg=22.8kg/m3,Tg=900K,[O2]=15%
b)pinj=1500bar,ρg=22.8kg/m3,Tg=1000K,[O2]=15%
c)pinj=100MPa,ρg=22.8kg/m3,Tg=900K,[O2]=15%
d)pinj=150MPa,ρg=22.8kg/m3,Tg=900K,[O2]=21%
图8.25 喷雾轴线上碳烟体积分数和温度的分布
a)物理绝对坐标 b)火焰坐标
图8.26 两个环境温度工况下的ϕ-T图和它们的相对分布(pinj=1500bar,ρg=22.8kg/m3,[O2]=15%)
a)T=900K b)T=1000K c)碳烟相对分布
图8.27 两个喷油压力工况下轴线上碳烟体积分数和碳烟温度分布(Tg=900K,ρg=22.8kg/m3,[O2]=15%)
图8.28 两个喷油压力工况下的ϕ-T图和它们的相对分布(Tg=900K,ρg=22.8kg/m3,[O2]=15%)
a)pinj=150MPa b)pinj=100MPa c)碳烟相对分布
图8.29 不同氧体积分数下喷雾轴线上碳烟体积分数和温度的分布
a)物理绝对坐标 b)火焰坐标
图8.30 碳烟体积分数径向分布(pinj=150MPa,Tg=900K,ρg=22.8kg/m3)
a)不同氧浓度下,在0.42火焰坐标处碳烟体积分数径向分布 b)火焰坐标下KL的轴向分布
图8.31 两个氧浓度工况下的ϕ-T图(pinj=150MPa,Tg=900K,ρg=22.8kg/m3)
图8.32 非燃烧工况下喷雾贯穿距
a)喷雾间隔的影响 b)第一次喷雾脉宽的影响
图8.33 纹影法和OH*化学发光法得到的两个喷雾脉冲的着火延迟期和火焰浮起长度。蓝色代表第一次喷雾结果,红色表示第二次喷雾结果
图8.34 标准工况(500-500-500)下燃烧喷雾发展过程。黑色曲线代表纹影图像得到的喷雾轮廓,红色曲线代表由OH*图像得到的对称面上的OH*自由基轮廓
图8.35 标准工况(500-500-500)的msoot(x,t)云图、IOH(x,t)图轮廓以及喷雾贯穿距
图8.36 喷雾间隔不同工况,总体碳烟量,平均碳烟温度和msoot(x,t)云图轮廓(基于时间ASOI2)
a)总体碳烟量 b)平均碳烟温度 c)云图
图8.37 第一次喷雾持续时间不同工况下总体碳烟量,平均碳烟温度和msoot(x,t)云图轮廓(基于时间ASOI2)
a)总体碳烟量 b)平均碳烟温度 c)云图
图8.38 纹影成像和UV-LA的光路布置
图8.39 PIV光路布置示意图
图8.40 PIV测试面的分布
图8.41 NO工况下气缸内的热力学条件
图8.42 CC测试截面上平均气流速度场随时间的变化
图8.43 不同截面上的速度场分布
图8.44 由纹影成像得到的正十二烷(C12H26)和混合燃油(mix)在NO1500和LD1500工况下的喷雾贯穿距
图8.45 NO1500工况下纹影成像和UV-LA技术的比较
图8.46 NO工况下纹影法和UV-LA测得的喷雾贯穿距的比较(Tg=870K,O2=0,pinj=150MPa,ρg=22.8kg/m3)
图8.47 正十二烷(C12H26)和混合燃油(mix)在NO1500和LD1500工况下的液相长度
图8.48 非燃烧工况下与ECN喷雾贯穿距的比较
图8.49 UV-LA测得的喷雾轮廓随时间变化以及PIV测得速度流线(SA1500)
图8.50 SA1500工况下非燃烧喷雾(左图)和燃烧喷雾(右图)的瞬态发展
图8.51 SA1500工况下的燃烧喷雾贯穿距与ECN数据的对比
图8.52 SA工况喷雾贯穿距与氧浓度的敏感性(pinj=150MPa,Tg=900K,ρg=22.8kg/m3)
图8.53 SA工况下不同氧浓度时的着火延迟期和火焰浮起长度(pinj=150MPa,Tg=900K,ρg=22.8kg/m3)
a)着火延迟期 b)火焰浮起长度
图8.54 不同环境温度下的着火延迟期和火焰浮起长度(pinj=150MPa,O2=21%,ρg=22.8kg/m3)
a)着火延迟期 b)火焰浮起长度
图8.55 SA工况下msoot(x,t)云图和总体碳烟质量与ECN数据的对比(pinj=150MPa,Tg=900K,O2=21%,ρg=22.8kg/m3)
a)发动机 b)ECN c)总体碳烟质量
图8.56 碳烟测试光路示意图
图8.58 与图8.57对应循环的放热率(AHRR)曲线和40次循环的平均值t(C12,LT500)
图8.59 应用辐射图像判断碳烟/非碳烟循环的步骤(C12,LT500)
a)单个喷油循环每帧图像的灰度值的积分 b)不同循环的总体辐射强度
图8.60 每循环总体碳烟量与总体碳烟辐射强度的关系(C12,LT500)
图8.61 所有工况的碳烟循环概率
图8.62 喷雾轴向速度(实线)与环境气体轴向速度(虚线)的对比(Ta=760K,ρa=19.3kg/m3)
图8.63 正十二烷在LT500工况下OH*图像六次喷雾的示例
图8.64 正十二烷不同工况下的LOL和对应的ΦH。误差条表示循环波动
图8.65 由DBI图像所有循环平均得到的三种喷油压力下的喷雾轴线上的KL值(3800μs ASOI)
a)LT,正十二烷 b)MT,正庚烷
图8.66 光路偏折效应对正庚烷KL值的影响(3800μs ASOI,LT工况)
a)所有碳烟循环平均得到的轴线上KL值 b)LT1000工况下的轴线上KL值
图8.67 DBI与双色法在喷雾轴线上KL值对比
a)HT500,C12(碳烟循环概率=100%)b)LT500,C12(碳烟循环概率=92.5%)
c)HT500,C7(碳烟循环概率=96.7%)d)MT1000,C7(碳烟循环概率=23.3%)
图8.68 模型中简化的非燃烧喷雾(左图,t=tSOC-)在着火时刻向燃烧喷雾(右图t=tSOC+)瞬态变化的过程
图8.69 由公式计算得到的关于径向膨胀的简化描述()。膨胀参考区间,分别假定LOL=17mm不变,SSOC变化,以及假定SSOC=32mm不变,LOL变化