不确定性高时,群策群力避免大错特错
德尔菲专家判断法最早起源于第二次世界大战后期。当时美国空军要开发新的武器,但正因为是新武器,你不知道你不知道的。武器要达到什么性能,开发周期有多长,成功概率有多高,都充满不确定性。于是,军方就召集各方面的专家,群策群力,判断新技术的走向,指导新武器的开发。
或许有人会说,我们不是每天都在这么做嘛,不然那一个接一个的会议在干什么?不是的。与一般的专家会议不同,德尔菲专家判断法有三大独特之处:(1)专家判断;(2)匿名、背靠背;(3)多轮反馈和修正。这减小了公司政治和“随大流”等因素的影响。
专家指的是对判断对象有判断能力的人,而不是我们通常的领导或者职能专家。比如对具体的产品,具体的设计人员、产品经理往往比设计老总、销售老总们更有判断能力。相比之下,德尔菲专家判断法更加客观,因为是专家独立做判断,集体冒进的风险更低。而通常的高管会议呢,则经常变成了“免责会议”,在群体决策的机制下,企业更容易冒险,承担更多本来不应该承担的风险。
匿名、背靠背的好处是参与者不用担心“对号入座”,大家独立做判断,避免了职位高的人对职位低的人、强势职能对弱势职能的影响,而这正是通常的会议不具备的。试想想,不管一个组织多民主,氛围多宽松,老总坐在那里,大家的思路总会自觉不自觉地跟着老总走,很难做到真正的群策群力。在公司政治的影响下,大家都藏着掖着,怕丢自己的面子,也怕丢别人的面子。在德尔菲专家判断法里,每个专家背靠背,以匿名的方式独立判断,就不存在这些问题。
多轮反馈和修正是指组织者征集每个专家的判断及其依据,以匿名的方式汇总,反馈给每个专家组成员,让他们参考,调整下一轮判断。这促进了专家团队的信息对称,提高了决策质量,直到最后达成共识,或者达到预先设定的门槛,比如重复了多少轮。
“三个臭皮匠,能顶一个诸葛亮”,德尔菲专家判断法可以说是“智慧在民间”的体现。对于同一事物,不同的人从不同的侧面有一定的认知,把这些认知整合到一起,就得到更全面、更好的认识。对这一点我深有体会:以前老东家为了进入新的领域,开发了N个新产品,都失败了,而且很早就知道会失败,因为你到餐厅里去,人人都在窃窃私语说会失败。这些人从不同角度,或多或少对新产品有一定的了解,整合到一起,就能看出清晰的方向来。
我在培训中,经常用一个集体游戏来说明这一点:我拿出一堆糖来,装在一个透明的大罐子里,足足有几百块,现场让大家来猜有多少块,各自扫描二维码填写。刚开始猜的时候,前几个人的平均值变动很大,误差也很大;一旦有接近10个人猜了,平均值的准确度就相当高,轻而易举达到70%以上——要知道,在需求预测中,70%可以说是个大关,很多企业都过不去;等十几个、二十个人以及更多的人报了数据上来,准确度就到了百分之八九十乃至更高。
这些人都是第一次猜,而且是只看一眼就猜,不允许他们仔细去数。有的人猜得高,有的人猜得低,平均后就更接近真实值。这在数理统计上也有依据,就是“大数定律”:用我们外行人的话讲,就是样本的数量越大,样本的平均值就越接近真实的平均值。放在专家预测上,就是多人预测减小了误差,往往比单个人的预测更准确。这是集体智慧战胜个人英雄主义。就如《超预测:预见未来的艺术和科学》一书中说的,(在预测上)一个人要打败多个人,需要有很强的能力和相当的训练,意味着交了很多学费,试了很多错;一群人要打败一个人,则不需要多少专业知识和训练(见图1-19)。
图1-19 个人能力与集体智慧的较量
对于不确定性很大的情况,比如新产品、新项目、大型的促销活动、长周期物料的预测,德尔菲专家判断法提供了一个很好的工具,让我们更有效地整合团队智慧,更稳定、更可靠地做好决策。这也是在下面的新品预测案例中,用跨职能团队代替个人预测的原因。
那是我跟一个快时尚电商做的一个案例,用德尔菲专家判断法预测上新期间的销量。快时尚电商面临的是一个充满不确定性、充满挑战的典型环境:案例企业做女孩子的服装,时效性强,生命周期短,需求直上直下,基本没有成熟期,预测本来就非常难做;电商环境下,上新期间,各种社交媒体的造势活动,更增加了需求的不确定性。再加上服装行业看上去简单,其供应链却一点也不简单,从原材料到半成品再到成品,动辄需要3个月的时间,一旦初始预测失败,几无返单的机会。
没有好的预测方法论,预测的风险太大,谁都不敢做预测,案例企业就只能靠老板做预测,因为只有他能够承担预测失败的风险,但短缺和过剩的问题并没有解决。作为解决方案,我们导入德尔菲专家判断法,组成有产品经理、设计师、门店经理、老总等7人的专家团队,预测一个新品在上新期间的初始销量。经过两轮循环,以专家团队的平均值作为预测,准确度达到90%以上。
这是个一万多字的案例,有很多细节,我已经纳入《需求预测和库存计划:一个实践者的角度》一书中(第230~241页)。大家也可扫描右边的二维码,在我的微信公众号“供应链管理专栏”中阅读。案例详细地阐述了如何选择合适的专家,问合适的问题,提供合适的背景信息,用在合适的产品上,用合适的方法统计结果,以及德尔菲专家判断法的结果是否有约束力,这一流程该由哪个职能维护等。
我想补充的是,越是简单的方法,越要精心设计,否则很容易垃圾进、垃圾出,流于形式。德尔菲专家判断法看上去很简单,但想成功实施,有三点要特别注意。
第一,德尔菲专家判断法不是“拍脑袋”,也得严格遵循“从数据开始,由判断结束”的决策流程。就如这个快时尚电商的案例中,虽然这款衣服是新品,没有销售历史,但案例企业销售过类似的服装,还是有一定的可参考性。于是我们把上一年上新的6个可参考的产品找出来,统计上架30天、60天、90天的销量分别是多少;相比那6个产品,这个产品的定位、定价有何不同,以及有多少后续产品的上市计划等。
专家之所以是专家,主要是因为他们有类似产品的经验,而这些经验有相当一部分已经固化在需求历史中了。不过试想想,如果我们不把这些信息找出来,专家们会不会去系统地找?不会的:他们都是一帮忙人,帮助做计划是他们的兼职;有些人像设计,不怎么跟ERP打交道,根本不知道这些信息在哪里。离开了具体的信息,最终就变成单纯地“拍脑袋”。虽然多人“拍脑袋”比一人强,但还是改变不了“拍脑袋”的本质。
此外,为了防止专家简单地“拍脑袋”,我们要求专家不但做判断,而且要讲“故事”,罗列判断背后的假设和依据。要知道,作为判断,其“故事”比数据更重要,也往往更有参考价值。
第二,德尔菲专家判断法不能做成高管的评审会、跨职能的免责会。在组建专家团队时,常犯的错误有二:(1)把各部门的高管纳入,这些人虽然是各自职能方面的专家,但对于具体的产品往往介入有限,判断能力不足;(2)每个职能都纳入代表,而有些职能比如财务、采购、质量对需求预测所知有限,判断能力也有限。这是典型的“免责会”做法:你们各个职能都参与了,老总们也在,以后出了问题可不要怪我噢。这是传统的会议方式的延续,并不能提高决策的质量;相反,因为缺乏产品层面的判断能力,有些“专家”反倒稀释了决策质量。
我发现,在管理粗放,动辄要老总审批的企业,容易犯第一个错误。比如在一个新能源企业,他们设计的专家团队就包括每个职能的负责人、各个城市子公司的老总等。在跨职能协调困难、协作度低的企业,比较容易犯第二个错误。比如有一家工业品企业,虽然是上市企业,但传统的老国有企业的作风仍然浓厚,他们设计的专家团队无所不包,从项目经理到研发工程师、产品经理、销售经理,再到产品计划工程师、策略采购工程师、执行采购工程师,甚至财务经理、制造工程师和售后工程师也有一席之地。这都是群体决策做法的变种,不是德尔菲专家判断法。
第三,德尔菲专家判断法不能做成一锤子买卖,而要建立闭环改进机制。不确定性很高的场景,不管是全新产品的上市,还是显著改变需求的促销活动,并不是每天都发生的。这容易让大家产生误解,认为德尔菲专家判断法是应对那些一次性事件的。其实我们是一个又一个地导入新产品,一次又一次地做促销,无非是间隔时间比较长,远非一次性事件了。所以,我们要不断改善德尔菲专家判断法,让它成为我们工具箱里的常用工具。这需要通过反馈机制,从过往项目的失败中学习。
但问题是,德尔菲专家判断法的周期较长,给闭环管理带来挑战。就上面的快时尚电商案例来说,初始预测要在3个月以前做,那是由供应周期决定的;获得上新首月的销量又用掉一个月,那就意味着从做出预测,到结果出来,前后有4个月的周期,大部分专家估计都把这产品给忘了,因为其间他们已经开发了更多新品。这里的关键是,作为组织者,要有始有终,总结经验教训,比如召集短平快的会议,或者组织简单的聚餐,把这些信息反馈给专家团队,帮助核心专家们更好地掌握这一方法论。缺乏有效的反馈和学习,德尔菲专家判断法就“有教训,没经验”,没有实质性的改进,判断质量不高,就很容易倒退回原来的方法,比如老总做计划,内部用户提需求。
实践者问
如果说计划是一群人的智慧,错得最少,那结果不好时怎么追责?
刘宝红答
如果已经是最好地整合了历史经验和对未来的预判,那么计划错了就错了,那是生活的一部分。业务目标没实现,销售拿不到他们的提成,计划没了相应的奖金,这都是自然追责,我不认为需要额外的追责。
这是基于共识的预测的精髓。这里的关键是从数据开始,由判断结束,消除信息不对称,在对称信息的基础上,做出最好的决策,失败的话就失败了。用著名橄榄球教练贝尔·布莱恩的话说,那就是承认错误,汲取教训,不要再犯。[1]
实践者问
德尔菲专家判断法需要多长时间?市场老总要敲定明年的销售目标,他认为德尔菲专家判断法是个好办法,要我们下周递交专家的意见。
刘宝红答
对于规模较大的企业,首次应用的话,周期应该在三四个星期左右:第一个星期培训方法论;第二个星期确定判断的问题,组织专家团队,搜集和整理背景资料;第三个星期再次培训专家团队,解释方法论,解释数据,熟悉数据,做第一次判断;第四个星期汇总第一次判断的结果,匿名反馈给团队,做第二次、第三次判断。时间太少,组织者、专家团队没法消化,效果欠佳,解决不了问题,反倒影响这个重要方法的推广。
德尔菲专家判断法看上去简单,其实是个重武器,因为涉及跨职能部门。越是简单的方法,越需要精心的设计。它不是简单地把几个人叫到一起,开个会那样简单。初次应用的时候,至少给专家团队三次机会接触:第一次是初始培训,让大家有初步的了解;第二次是介绍要做的项目,顺便再温习一下方法论;第三次是分发项目背景数据,结合具体的项目再一次介绍整个方法论。
这位实践者一再问:能否更快点?他们在做年度计划,包括一些影响深远的决策。当然可以更快一点,不过风险是欲速则不达。很多企业为了赶时间,就经常性地陷入“从来没有时间一次把事情做好,但总有时间两次、三次把事情做好”的怪圈。
就拿这个企业来说,他们想借助德尔菲专家判断法,预测3个已有系列、1个全新系列产品的年度销量。4个产品系列,线上、线下业务并存,这意味着有8个数据点,要判断的内容太多,特别是在行业发生巨变的情况下,有很多变量要考虑,很难有人能够对付这么多的问题,做出高质量的判断。
为了降低实施难度,我帮助他们简化为三个独立的判断,亦即三个项目,因为专家团队不同:(1)3个老产品系列,线上销量预测;(2)3个老产品系列,线下销量预测;(3)1个新产品系列的整体销量预测。线上和线下之所以分开,是因为专家虽有交叉,但不同。对于全新产品,尚无线上、线下的销售历史,那就整合到一起来预测。从该项目立项,到制订初步方案,再到我帮助他们简化方案,已经快两个星期过去了,这还不包括背景数据的收集、整理,专家团队的组建、培训等准备工作。再加上一轮、两轮的判断,至少又得两个星期,如果要做到位的话。
实践者问
新冠肺炎疫情期间,如何预测?
刘宝红答
新冠肺炎疫情增加了不确定性,需求和供应的不确定性都是,比平日更需要群策群力,以避免大错特错。类似的情况还有更多,比如大宗原材料的价格走势,半导体芯片的短缺状况等,都是德尔菲专家判断法的适用对象。
[1] 贝尔·布莱恩(Bear Bryant)是美国阿拉巴马大学的传奇橄榄球教练(是的,就是电影《阿甘正传》中阿甘打橄榄球的大学),率队六次赢得全美冠军。他的原话是When you make a mistake,there are only three things you should ever do about it:admit it,learn from it,and don’t repeat it(一个人犯了错误后,只需要做三件事:承认错误,汲取教训,不要再犯)。