1.2.3 电蚀产物的抛出
脉冲放电的初期,热源产生的瞬时高温,使电极放电点部分材料汽化。汽化过程中产生很大的热爆炸力,使加热至熔化状态的材料被挤出或溅出。电极蒸气、介质蒸气以及放电通道的急剧膨胀,也会产生相当大的压力,参与熔化材料的抛出过程。脉冲持续时间较短时,这种热爆炸力抛出效应较显著。
脉冲放电期间,电流的电磁效应产生电磁力,它与电力线成法线方向,其大小取决于电极上电力线的分布。作用在放电熔化区内的电磁力的方向与电极表面成一角度,可分解成两个分力,即轴向力和径向力,它们的大小随放电时间而变化。当轴向力指向电极内部时,可将熔融材料压出,径向力却阻碍其被压出。随着放电时间的变化,电力线分布也变化。当轴向力减少、径向力增大时,熔化区将处于较高的压力下,提高了熔融材料的沸点。这时,在过热熔融材料内产生汽化中心,引起汽化爆炸,将熔化材料抛出。这种效应在脉冲持续时间较长、电流较大的情况下比较明显。
在放电电流结束后的若干时间内,由于液体动力作用,熔化材料还会大量抛出。因为放电过程产生气泡,随着脉冲电流的增大,气泡内的压力升高。电流经过最大值后,汽化速度降低,气泡内的压力降低,气泡壁上蒸气冷凝以及液体运动的惯性均导致气泡内压力的降低。电流结束后,气泡继续扩展,残余蒸气继续冷凝,致使气泡内压力急剧下降,甚至降到大气压力以下,形成局部真空,使高压力下溶解在熔融和过热材料中的气体放出,材料本身沸腾,使熔融的液滴和蒸气从小坑中再一次抛出,至此,放电小坑最后形成。
总之,材料的抛出是热爆炸力、电磁力、流体动力等综合作用的结果。人们对此复杂的抛出机理的认识还在不断深化之中。
正极、负极分别受到电子、正离子撞击的能量、热量不同;不同的电极材料的熔点、汽化点不同;脉冲宽度、脉冲电流大小不同,正、负电极上被抛出材料的数量也会不同,在目前的研究条件和方法下还较难定量计算。