智能环境友好型车辆:概念、技术架构与工程实现
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.5.1 基于行驶环境信息交互的智能混合动力汽车

混合动力汽车能够提高车辆燃油经济性、降低排放性,在一定程度上解决当前能源与环境的问题,已逐渐进入产业化阶段。然而,目前混合动力汽车缺少有效的交通信息识别,仅基于当前车辆状态进行能量管理与分配,较难实现全工况下系统燃油经济性的优化。另一方面,综合车辆主动安全性与驾驶舒适性的混合动力系统智能主动安全控制技术有待进一步研究。基于以上混合动力汽车存在的问题,提出融合混合动力系统与ITS各自优势与特点,设计智能混合动力汽车(i-HEV),以实现安全、舒适、节能与环保的车辆综合性能。

相比常规智能汽车,i-HEV的特征在于:整车具有传统内燃机与电机电池动力组两个独立工作而又相互联系的动力系统;发动机、电机通过CAN总线进行转矩直接控制。因此,智能混合动力汽车更容易实现车辆的驾驶辅助控制,而不用单独设计加速踏板、制动踏板等底层控制器与执行器[9]。相比常规智能汽车与传统混合动力汽车,i-HEV具有更安全、更经济的特点,主要体现在以下两方面:与常规智能汽车相比,i-HEV融合混合驱动系统的快速响应、精确可控等特点,可以进一步提高整车驱动、制动响应速度,提高整车安全性,尤其是紧急制动下的安全性;与传统混合动力汽车相比,i-HEV在综合实现车辆主动安全控制的同时,依靠识别的交通环境信息,优化动力系统能量分配策略,可进一步提高整车燃油经济性。

相比常规汽车,i-HEV集成了发动机与电机电池耦合的多能源动力系统,其优势主要体现在纵向运动过程中的燃油经济性与动力性方面,故本书主要研究i-HEV纵向运动控制所涉及的关键技术。设计的i-HEV系统整体结构如图1.7所示,其主要包含智能信息交互、混合动力与电控化底盘等三大系统。其中,智能信息交互系统用于识别车辆运动状态、车间运动状态以及交通道路环境等信息,包含雷达、摄像头、GPS、GIS以及DSRC车-路通信模块等。混合动力系统用于提供车辆运动所需动力,包含发动机、驱动电机、发电机以及5档自动变速器(AMT),发动机通过离合器与AMT连接,驱动电机布置在变速器后端,发电机通过传动带与发动机连接,系统可以工作在发动机单独工作、发动机驱动同时发电、发动机与驱动电机联合驱动、电机单独驱动等不同工作模式之下。电控化底盘在纵向运动控制中主要包含电子真空助力(Electronic Vacuum Booster, EVB)液压制动系统以及电机制动能量回收系统,将根据总需求制动力矩进行分配[10]

图1.7 智能混合动力汽车系统结构

不同驾驶模式均要求对驱动、制动系统进行实时控制,基于线控系统特点,提出双CAN结构的i-HEV执行及控制系统架构,如图1.8所示。

基于双CAN网络通信结构,将i-HEV分为动力系统子CAN网以及传感系统子CAN网。其中动力系统子CAN网包含发动机、电机、液压制动、AMT及其相关的动力系统节点;传感系统包含雷达、摄像头、GPS/GIS、DSRC车-路通信以及包含横摆角速度、侧向加速度、纵向加速度、转向盘转角及部件的传感器节点。

i-HEV各系统部件采用分布式分层执行与集总控制结构,整车功能依靠三层协调工作实现。上层为多系统协调整车控制器,用于根据驾驶员操作、行驶环境以及车辆当前状态,制定最优控制命令。中层为分布式执行系统控制器,执行部件包含发动机执行部件、电机执行部件、液压制动执行部件以及AMT执行部件,执行系统控制器统一接受来自CAN总线控制指令,驱动执行系统动作。下层为各系统执行部件,采用统一接口定义,根据中层控制器指令进行相应操作。

图1.8 i-HEV“集总-分布式”双CAN系统拓扑结构

为实现i-HEV综合的安全、经济与舒适的车辆性能,基于i-HEV系统功能,分为以下3大子系统:考虑安全、经济与舒适多目标协调的i-HEV自适应巡航控制系统;基于实时交通环境信息的i-HEV整车控制系统;基于发动机、电机与液压制动多系统协调的车辆稳定性控制系统。

(1)考虑安全、经济与舒适多目标协调的i-HEV自适应巡航控制系统

对于i-HEV系统,其复合的动力系统为经济性的优化提供了足够的空间,融合巡航控制过程中车辆驱动/制动功率与多能源动力的能量分配的协同优化,i-HEV自适应巡航控制可获取更优的系统安全、经济与舒适的综合性能。重点研究的内容包括:基于雷达、摄像头多传感器融合的前车运动识别算法;考虑系统非线性动力学与车间动力学耦合特性的i-HEV自适应巡航广义纵向动力学建模;混合动力系统电池等效燃油消耗特性估算;考虑安全、经济与舒适多目标协调的i-HEV自适应巡航性能指标设计;i-HEV自适应巡航多目标、多能源系统协调的非线性控制算法设计。

(2)基于实时交通环境信息的i-HEV整车控制系统

基于实时的交通环境信息,可对i-HEV混合动力系统进行优化的能量分配,提高整车燃油经济性。重点研究的内容包括:基于雷达、摄像头、GPS/GIS及车载传感系统等多信息融合的交通运行工况与前车运动特征识别;基于局部车间相对运动信息与全局交通工况特征信息的i-HEV混合动力系统能量优化分配算法;混合动力系统发动机、电机、AMT与液压制动模式切换的多系统动态协调控制算法。

(3)基于发动机、电机与液压制动多系统协调的车辆稳定性控制系统

由于电机驱动系统具有响应快速、准确等特点,基于发动机、电机与液压制动多系统协调工作的车辆稳定性控制系统,能够提高车辆失稳情况下系统的控制效果,进一步优化车辆行驶稳定性。重点研究的内容包括:基于发动机、电机与液压制动的i-HEV驱动防滑控制系统;基于发动机、电机与液压制动的i-HEV制动防抱死控制系统;基于发动机、电机与液压制动的i-HEV车辆电子稳定性控制系统。