工业大数据工程:系统、方法与实践
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2 工业大数据的内涵与范畴

1.2.1 工业大数据的概念

工业大数据在不同语境下有不同的含义。单纯从数据的角度,工业大数据是工业数据的总和[3],包括企业信息化数据、工业物联网数据及外部跨界数据,很多工业物联网数据也符合一般大数据的体量特征(数据量大、多样、快速等)。从企业应用的角度,工业大数据泛指各种数据驱动的思维模式、业务创新和应用实施。从技术的角度,工业大数据很多时候被用来指代工业大数据技术,包括数据的接入、存储、查询、分析及应用等相关技术,被分为平台技术、分析技术和应用技术。大数据平台解决大量、多源、异构、强关联数据的接存管用的问题[4],通常结合基础设施特征、数据特征、计算负荷特征进行经济化和灵活化设计。大数据分析关心如何从大量数据中挖掘出有用的模式,构建具有业务实操性的模型。大数据应用主要针对特定需求,基于大数据平台和分析技术,以合适的形态(例如,私有部署、SaaS服务、工业数据应用)相对完整地支撑业务应用场景。

需要强调的是,数据体量不是工业大数据的关键特征,维度高、强上下文才是工业大数据的关键特征之一。10000台设备,每台设备100个测点,秒级浮点型数据(按8Bytes估算)增量仅为250 TB/年。在很多工业应用中,数据量并不大,但一个分析应用需要关联设备和产品的维度高达几十个,变量的组合数目远大于样本数量。此外,一个数据项背后关联着大量的隐形信息和经验知识,例如,在风电发电机组的风速测量值的背后,需要考虑尾流/湍流/剪切、气象/地形环境、偏航等控制动作对风速测量的影响。因此,在很多工业应用领域,数据量不是技术瓶颈,多源异构数据的物理信息对象建模、多模型融合(机理、经验、统计模型)和专家知识沉淀等才是其关键技术。