1.3.2 余子式与代数余子式
一般地,低阶行列式比高阶行列式较易于计算,在把高阶行列式变成低阶行列式时,要把行列式按一行(列)展开,这样要用到代数余子式的概念.
由三阶行列式的对角线法则,得到
=a11a22a33+a12a23a31+a13a21a32-a13a22a31-a12a21a33-a11a23a32
=a11(a22a33-a23a32)-a12(a21a33-a23a31)+a13(a21a32-a22a31)
(1-13)
在式1-13中,二阶行列式
就是在原行列式中将元素a11所在的行与列划去后,剩下的元素按原来的相对位置组成的低一阶的行列式.这样的行列式称为a11的余子式,记为M11.又如,a22,a32的余子式分别为
定义1 在n阶行列式中,划去元素aij所在的第i行和第j列后,余下的n-1阶行列式称为元素aij的余子式,记为Mij.元素aij的余子式Mij乘以(-1)i+j后得到的式子,称为aij的代数余子式,记为Aij,即
Aij=(-1)i+jMij
(1-14)
如,在上面的三阶行列式中,第一行元素的代数余子式为
这样,式1-13可以写成第一行元素与相应代数余子式乘积之和,即
一般地,有如下的行列式展开定理.
定理1 n阶行列式等于其任一行(列)所有元素与相应代数余子式的乘积之和,即
(1-15)
其中,等号上方写(i),表示n阶行列式按第i行展开.
证明 (1)先证最特殊的情况,即第一行只有a11≠0,而其余元素均为零的情况.
由行列式的定义知,每一项都必须含有第一行的一个元素,但第一行只有a11≠0,所以一般项可写成
(-1)τ(1j2j3…jn)a11a2j2…anjn=a11[(-1)τ(j2j3…jn)a2j2…anjn]
上式等号右边括号内的式子正是M11的一般项,所以D=a11M11=a11(-1)1+1M11=a11A11.
(2)再证行列式D中第i行第j列元素aij≠0,其余元素均为零的情况.
先进行交换,将D中的第i行,经过i-1次交换到第1行;再进行列的交换,经过j-1次交换到第1列,共经过了i+j-2次交换,得行列式
(3)最后证一般情形,可把行列式D写成如下形式
=ai1Ai1+ai2Ai2+…+ainAin
定理得证.
例3 分别按第一行与第二列展开行列式.
解 ①按第一行展开,得到
②按第二列展开
定理2 n阶行列式D=det(aij)的某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即
ai1Aj1+ai2Aj2+…+ainAjn=0 (i≠j)
a1iA1j+a2iA2j+…+aniAnj=0 (i≠j)
(1-16)
证明 将行列式D按第j行展开有
把上式中的ajk换成aik(k=1,2,…n),得到
上式右端当i≠j时,有两行对应元素相同,其行列式的值为零,所以得
ai1Aj1+ai2Aj2+…+ainAjn=0
同理,将行列式D中第i列的元素换为第j列(i≠j)的对应元素,可证D按列展开的结论.