二、逆合成分析的一般顺序
逆合成分析过程如同数学运算,数学运算是从已知条件开始,最终获得正确答案,虽然解题的过程只要逻辑正确可以因人而异,却有繁简之分;而任何一条合成路线的设计,只要能合成出所需要的化合物,应该说都是合理的,但是合成的技巧、路线设计水平的高低却体现在路线的简洁、产率的高低、原料的来源方便与否、操作的难易等诸多方面。为了设计一条高水平的合成路线,应该科学、合理地做好逆合成分析工作。一般来说,逆合成分析工作应遵循以下顺序。
1.由目标分子结构和反应性决定逆合成顺序 在进行药物分子合成过程中,首先需要对目标分子有充分认识,并对其反应深入了解,通过对目标分子的结构考察,分析其结构特征及化学反应性质,从而设计出有针对性的合成路线。在目标分子的分拆过程中,应先分拆对称部分(见分子对称法);然后分拆分子中不稳定部分或影响分子反应性及选择性的部分。
目标分子中C—N、C—S、C—O等碳-杂键通常是该分子的拆键部位,即分子的连接部位。例如,抗真菌药益康唑(econazole,2-10)分子中有C—O和C—N两个拆键部位,可从这两处追溯其合成的前一步中间体:
如图2-7所示,从虚线a处断开C—O键,益康唑的前体为对氯甲基氯苯(2-13)和1-(2,4-二氯苯基)-2-(1-咪唑基)乙醇(2-11);2-11继续分拆,得到1-(2,4-二氯苯基)-2-氯代乙醇(2-15)和咪唑(2-14)。
从虚线b处断开C—N,前体为咪唑(2-14)和2-(4-氯苯甲氧基)-2-(2,4-二氯苯基)氯乙烷(2-12)。2-12进一步分拆,前体为对氯甲基氯苯(2-13)和1-(2,4-二氯苯基)-2-氯代乙醇(2-15)。
综上所述,无论按照a途径或b途径分拆,得到的合成益康唑的基本原料都是对氯甲基氯苯(2-13)、咪唑(2-14)和1-(2,4-二氯苯基)-2-氯代乙醇(2-15),问题是先合成C—O键还是先合成C—N键有利呢(注意:合成与分拆的顺序相反!)
按照b途径分拆,1-(2,4-二氯苯基)-2-氯代乙醇(2-15)与对氯甲基氯苯(2-13)在碱性条件下制备中间体2-12时,理论基础是Williamson醚合成,但是由于2-15自身也存在活性的伯氯基团,所以不可避免地将发生2-15自身分子的烷基化反应,从而使反应复杂化,降低2-12的收率。因此,先形成C—N键,再形成C—O键的a途径对合成益康唑分子更为有利(图2-7)。
图2-7 益康唑的逆合成分析
如图2-8所示,1-(2,4-二氯苯基)-2-氯代乙醇(2-15)是一个仲醇,可由相应的酮还原制得,而其前体α-氯代-2,4-二氯苯乙酮(2-16)可由2,4-二氯苯(2-17)与氯乙酰氯(2-18)经Friedel-Crafts反应制备。益康唑的合成如下(图2-9)。
图2-8 1-(2,4-二氯苯基)-2-氯代乙醇(2-15)的逆合成分析
图2-9 益康唑的合成
2.从分子中间分拆 一般来说,碳-杂键易于合成,在分拆过程中处于优先考虑的地位。但是有时候首先分拆碳-碳键可简化合成过程,提高目标药物分子的合成收率。例如,中枢神经镇痛药哌替啶(pethidine,2-19)是含叔胺的脂环药物,在其分子分拆中,首先经过两次官能团的转化,然后从分子环键结合处分拆C—C键,再经过一次官能团转化和分拆C—N键,即可得到起始原料环氧乙烷和甲胺(图2-10)。
图2-10 哌替啶的逆合成分析
在本品的合成过程中,首先是使用环氧乙烷和甲胺发生氮烷基化反应,生成二(β-羟乙基)甲胺(2-24),然后使用氯化亚砜氯化2-24,生成二(β-氯乙基)甲胺(2-23),2-23与活性亚甲基化合物苯乙腈(2-22)在碱性条件(胺基钠)下缩合关脂肪环得到4-苯基-4-氰基哌啶(2-21),2-21在酸性条件下水解、酯化生成哌替啶(2-19)。
从这个例子中可以看到,中间体2-23和2-24均有对称性,因此需要考虑一步合成,从而简化合成步骤(可见,分子考察并不止于最终的目标化合物,而是包含在逆合成分析的全过程中)。
哌替啶的合成如图2-11。
图2-11 哌替啶的合成
不论碳-碳键还是碳-杂键,从合成角度考虑逆合成转化顺序,特别是对一些比较复杂的药物分子,应着重强调从分子的中部分拆以获得汇聚法的合成;从分子中环键结合处或从分子的交叉点进行分拆。
例如,1998年上市的非甾体抗炎药环氧化酶-2选择性抑制剂西来曲葆(celebrex,2-25)的逆合成路线,首先选择在位于分子中部的吡唑处分拆分子,形成二酮(2-26)与4-磺酸氨基苯肼盐酸盐(2-27),二酮(2-26)可由4-甲基苯乙酮(2-28)和三氟乙酸乙酯(2-29)通过Claisen缩合反应制得(图2-12)。
图2-12 西来曲葆的逆合成分析
将4-甲基苯乙酮(2-28)和三氟乙酸乙酯(2-29)在甲醇钠存在下、甲醇中回流,分子间缩合制备二酮2-26,2-26与4-磺酸氨基苯肼盐酸盐(2-27),在乙醇中回流缩合即得目标分子西来曲葆(2-25)。西来曲葆的合成如图2-13。
图2-13 西来曲葆的合成
从合成角度考虑逆合成转化顺序,还应注意首先安排相应反应产率高的转化,或相应反应成功把握大的转化,这是因为越到合成工作的最后环节,原料越为珍贵,失败的代价越为高昂,因此要尽一切可能增加成功率。要做到这一点需要对有机反应有切实深入的理解。
3.多键分拆 一个目标药物分子往往有多种分拆方法,分拆方法不同导致所应用的合成反应不同、合成路线的长短不同、反应条件不同,原辅料和产率也有所差别。因此可以尝试从合成反应优化合成转化顺序。
从合成反应优化合成转化顺序首先可以寻求多键分拆的策略:通过一步合成反应同时建立多个化学键是简化合成步骤的有效方法。上文谈到的哌替啶和西来曲葆的合成实际上都应用了这个策略。在设计降血脂他汀类药物美伐他汀(mevastatin,2-30)的逆合成路线时也应用了基于协同反应的多键分拆策略(图2-14)。
图2-14 美伐他汀的逆合成路线
Johnson甾体合成法利用了含氧基团电性效应引发的仿生-烯烃多重环合反应,可在此反应中同时建立三个碳-碳键和三个脂环,是合成甾体药物的理想方法(图2-15)。
图2-15 Johnson甾体合成法
4.尝试联接与重排 可以尝试使用重排法和联接法。尽管分拆策略是逆合成分析的主要方法,但是利用联接与重排的方法往往可以简化合成路线。例如,苯并二氮类镇静催眠药氯氮(chlordiazepoxide,2-38)的合成就是利用了2-氯甲基-4-苯基-6-氯-喹唑啉-3-氧化物(2-35)的扩环重排获得的(图2-16)。
联接法也是十分有用的逆合成分析方法,如经典的甾体全合成中D环(2-39)的形成,是将带有甲基酮侧链的D环推导得醛酮的中间体(2-40),而此中间体可用连接法推导得到其前体甲基环己烯(2-41),这里依据的是臭氧氧化反应(图2-17)。
由于各种原因,按照有机合成基本原理设计的合成路线在实际执行过程中常常会遇到一些始料未及的困难,因此在合成设计时一定要留有机动灵活的余地,最理想的情况是为每一个中间体的合成都准备两至三套方案。
图2-16 氯氮的合成
图2-17 甾体环D环的逆合成分析