1.1.4 智能计算时代的其他典型应用
智能计算时代其实是由多种因素共同推动的,我们不应该将某一个或者某两三个概念狭义地定义为智能计算时代的标志。几年前,大数据、云计算、物联网等是关键的推动力。随着5G、智慧城市、无人驾驶等许多技术的发展和应用,智能计算时代的特征更加明显。
1.智慧城市
智慧城市这个概念源于2008年IBM公司提出的“智慧地球”的理念。它是数字城市与物联网相结合的产物,其实质是运用现代信息技术推动城市运行系统的互联、高效和智能,让城市中生活的人更加便捷,使城市发展更加和谐、更具活力。
智慧城市利用物联网、大数据、人工智能、区块链等信息技术将社会关系、城市管理、服务、环境等各城市要素信息集成到一个网络中,通过智慧化分析,提高城市运行效率、优化城市管理、改善民生,提升城市的可持续发展能力与环境的自我调节能力。智慧城市是在城市物联网的推动下产生的。智慧城市网络中的大数据是深入分析城市运行情况的基础,感知、管理和分析城市各个方面的数据,可为解决城市存在的问题(如环境破坏和资源短缺)提供理论指导与技术支持。
什么是智慧城市
图1-4给出了智慧城市的架构。
图1-4 智慧城市的架构
智慧城市的基础是城市信息的数据化,即城市画像,处于图1-4中的感知层、网络层和平台层。城市画像用数据对城市进行建模与刻画,将城市的物理和社会空间映射到数字空间,将城市的时空运行状况用数据呈现出来。智慧城市需要城市大脑,即依托AI支撑技术、海量多模态数据汇集与处理能力、开放平台生态体系等核心技术,构建全域感知中心、数据服务中心、AI服务中心、应用支撑中心及城市智能运行指挥中心等功能中心,实现城市的全时空要素立体感知、全流程数据安全共享、全方位AI能力共用、全业务系统应用支撑、全场景智能协同指挥。城市大脑处于图1-4中的应用层。
智慧城市涉及城市的方方面面。我们日常生活中的物流运输、条码识别、身份验证、虚拟课堂等都是智慧城市的产物。例如,健康码曾在我国防疫工作中起到重要的作用。再如,美丽的杭州西湖是旅游胜地,但西湖周边常因为游客过多造成交通拥堵。为此,相关部门启动了“城市大脑”工程,利用在主要交通路口安装的传感器来识别交通状况,进而训练出一个人工智能模型。该模型可以根据当时的情况和需要来调节红绿灯的时长,进而减少拥堵。
可见,智慧城市依托创新技术,推进城市的高效管理和可持续发展,使城市更宜居。
智慧社区是指在智慧城市建设的框架下,运用新技术、新模式,对社区管理、社区生活、公共服务等现代社区的组成部分进行智慧化提升,为社区群众提供政务、商务、娱乐、教育、医护及生活互助等多种便捷服务的模式。智慧社区建设的特征是见效快、惠民利民。
智慧社区的功能主要包括向社区居民发布政府公告、物价、天气、交通等信息,为居民提供在线监护、远程医疗、远程学习等应用,以楼宇电梯、景观灯光、车辆出入等涉及小区管理的内容为重点的智慧物业管理。
智能家居以家庭住宅为平台,利用通信/物联网、传感与控制、语音/语义识别、图像识别、云计算与边缘计算等技术,构建高效的住宅设施与家庭事务的管理系统,提升家居的安全性、便利性、舒适性和艺术性,并实现环保节能的居住环境。
目前,我国智能家居生态尚处于发展过程中,面临诸多问题。现有的智能家居技术的主要问题包括:人机交互体验较差;真正的用户刚需场景不多;产品之间联动性差。因此,智能家居要走的路还很长。2020年,有专家提出了“6S”智能家居的概念。“6S”包括物理安全(Safety)、信息安全(Security)、可持续发展(Sustainability)、个性化需求(Sensitivity)、服务(Service),以及智慧(Smartness)。“6S”智能家居系统的组成如图1-5所示。
图1-5 “6S”智能家居系统的组成
2.智慧环保
随着大数据技术的发展,智慧环保体系已经成为推动环境治理能力和治理体系现代化的重要支撑,建立完善的智慧环保体系是我国进一步提高环境治理效率的必然要求和重要举措。
智慧环保基于数字环保平台、在线监测/监控网络、环境应急指挥系统,融合物联网、云计算、3S、多网融合等技术,通过实时采集污染源、环境质量、生态、环境风险等信息,构建全方位、多层次、全覆盖的生态环境监测网络,推动环境信息资源高效、精准地传递及海量数据资源中心和统一服务支撑平台建设,重视资源的重整和优化,实现动态应用平台的组建和应用,以更加精细和动态的方式实现环境管理和决策的智慧,从而构筑感知测量更透彻、互联互通更可靠、智能应用更深入的智慧环保物联网体系,实现环境保护的智慧化。图1-6给出了智慧环保体系的架构。
图1-6 智慧环保体系的架构
智慧环保体系由智慧感知层、传输层、智慧云平台层、云服务层和终端用户层组成。智慧感知层利用可以随时随地感知、测量、捕获和传递信息的设备、系统或流程,实现对环境质量、污染源、生态、辐射等环境因素的实时数据进行“更透彻的感知”;传输层利用卫星网络、移动通信等技术,收集感知层获取的环境数据,实现环境数据的交互共享,从而实现“更全面的互联互通”;智慧云平台层首先整合来自传输层的海量数据,以云计算、大数据挖掘和高性能计算等技术手段,整合和分析海量的跨地域、跨行业的环境信息,进行海量存储、实时处理、深度挖掘和模型分析,实现“更深入的智能化”;云服务层通过构建云服务平台,建设业务系统及信息平台,提高数据透明度,方便各机构及公民合法获取数据,为环境质量管理、污染源治理、生态环境保护、辐射管理实现“更智慧的决策”;终端用户层将在感知层、传输层智慧云平台层和云服务层收集、处理、分析的数据分配到相应的部门或单位进行应用,以处理分析后的数据为依据做出合理、智能的决策。
3.无人驾驶汽车
无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,它主要依靠车内以计算机系统为主的智能驾驶仪来实现无人驾驶。无人驾驶汽车利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。
无人驾驶汽车集自动控制、体系结构、人工智能、视觉计算等技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物。图1-7给出了无人驾驶汽车中的硬件。
图1-7 无人驾驶汽车中的硬件
图1-8给出了无人驾驶汽车的系统架构,包含环境感知系统(进行信息采集及数据预处理)、中央决策系统(进行信息融合、决策规划及车辆控制)和底层执行系统(进行制动与驱动控制、转向控制、自动变速器控制及底盘一体化控制)。
无人驾驶汽车是汽车、人工智能与通信跨界融合的产物,是影响3个10万亿市场(汽车、出行、社会效益)的革命性产业,更是未来智慧城市重要的组成部分。无人驾驶可大幅减少交通事故,并极大降低传统的保险费用。无人驾驶还能大幅减少通勤所耗时间以及能源消耗,每年能够减少上亿吨汽车二氧化碳排放量。
智慧驾驶的必要性
虽然中国的无人驾驶起步较晚,在L2和L3阶段落后于欧美,但在L4阶段大有赶超之势。在市场规模方面,无人驾驶系统发展迅猛,据预测,以平均每辆车的无人驾驶系统的价格为5万元估算,2035年全球无人驾驶系统的市场空间将达6000亿元,国内市场空间接近1500亿元。在无人驾驶路测方面,北京市高级别自动驾驶示范区工作办公室于2021年11月25日公布北京正式开放国内首个自动驾驶出行服务商业化试点,百度和小马智行成为首批获许开展商业化试点服务的企业。这标志着国内自动驾驶领域从测试示范迈入商业化试点探索新阶段,对变革未来出行方式具有里程碑意义。2021年12月,小马智行自动驾驶卡车顺利驶入京台高速,开启常态化自动驾驶测试。这是全国范围内自动驾驶企业首次在政策开放的公开高速路进行高级别自动驾驶实景测试。
图1-8 无人驾驶汽车的系统架构