破解深度学习(基础篇):模型算法与实现
上QQ阅读APP看书,第一时间看更新

内容提要

本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。

本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。

本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。