上QQ阅读APP看书,第一时间看更新
内容提要
随着ChatGPT等大语言模型的迅速发展,大语言模型已经成为人工智能领域发展的快车道,不同领域涌现出各种强大的新模型。开发者想要独立构建、部署符合自身需求的大语言模型,需要理解大语言模型的实现框架和基本原理。
本书梳理大语言模型的发展,首先介绍Transformer模型的基本原理、结构和模块及在NLP任务中的应用;然后介绍由只编码(Encoder-Only)到只解码(Decoder-Only)的技术路线发展过程中对应的 BERT、GPT等大语言模型;接下来介绍大语言模型在部署、训练、调优过程中涉及的各种关键技术,如自动并行、预训练与微调、RLHF等,并提供相应的实践指导;最后以开源大语言模型BLOOM和LLaMA为样例,介绍其架构和实现过程,帮助读者理解并构建、部署自己的大语言模型。本书还提供了基于MindSpore框架的丰富样例代码。
本书适合人工智能、智能科学与技术、计算机科学与技术、电子信息工程、自动化等专业的本科生和研究生阅读,同时也为从事大语言模型相关工作的软件开发工程师和科研人员提供翔实的参考资料。