1.4.1 智能信息交互系统
智能信息交互系统用于车辆状态与交通环境信息的识别、i-EFV车辆与环境系统的信息交互以及多源信息的综合处理及显示,其结构示意图如图1.5所示。该系统包含车-车通信模块、车-路通信模块、远程无线通信模块、车载传感系统以及多源信号处理模块,各模块以及车载传感系统中各传感器在车内以总线方式进行交互。
1)车-车通信通过车载V2V通信模块实现,主要传递与车辆自身运动及部件工作相关的信息,包含车辆速度、加速度、加速踏板、制动踏板、车辆地理位置以及车辆运行状态及故障信息等。
图1.5 智能信息交互系统结构示意图
2)车-路通信通过车载V2I通信模块与道路基站的无线通信实现,其中车辆侧主要发送与自车运动及部件工作相关的信息,包含自车速度、行驶路径、自车部件状态及故障信息、自车行驶安全状态信息(与前车相对距离、相对速度、车辆行驶稳定状态等)以及车辆地理位置;道路侧主要发送与交通流以及道路相关的信息,包含交通流信息、交通信号灯信息、前方路口信息、道路特殊状态信息(前方交通事故、施工、限速等提示信息)以及道路信息(估测路面附着系数、道路曲率、道路坡度)等。
3)远程无线通信模块主要用于车辆与手机、互联网等进行通信,交互的信息主要包含手机远程监控与远程控制相关信息,基于互联网的车辆系统更新信息、服务查询信息等。
4)车载传感系统装载GPS、雷达、机器视觉、车辆运动传感器以及车辆部件传感器,用于采集车辆自身以及车辆行驶环境信息。其中GPS主要采集车辆地理位置以及车辆速度信息;雷达主要用于检测前方物体相对速度与相对距离信息;机器视觉主要用于行驶环境的识别(如车道线、道路曲率、邻车、道路标示牌等车辆与交通环境信息)和行人的识别,并根据系统功能提取相应的信息;车辆运动传感器主要采集纵向加速度、横向加速度以及横摆角速度等车辆运动信息;车辆部件传感器采集动力系统、传动系统、制动系统、悬架系统、转向系统以及相关部件的状态和故障信息。
5)多源信号处理模块主要基于车-车通信、车-路通信、远程无线通信以及车载传感系统等多源信息,进行相应的多源信号监控、管理以及综合处理,为车辆综合控制以及驾驶员操作提供准确的信息基础,其信号综合处理的理论基础是信息融合。
从以上智能信息交互系统结构组成与传输信息特点可以看出,其具有多网络异构与数据处理量庞大的特征。
一方面,网络系统集成了车内总线网、短程无线通信网与远程通信网。基于不同的应用场景,车内总线网络可能集成控制器局域网(Controller Area Network, CAN)、本地互联网络(Local Interconnect Network, LIN)、FlexRay和MOST(Media Oriented System Transport)等总线形式;车-车/车-路短程无线通信网络主要包含基于IEEE802.11p的专用短程通信(Dedicated Short Range Communications, DSRC)和基于IEEE802.11a/b/g/n/p的无线局域网络(Wireless Local Area Networks, WLAN);而远程通信网络则基于4G/5G进行车辆与信息服务平台间的远程通信。另一方面,i-EFV基于短程无线通信、远程无线通信以及车载传感系统识别等获取了全面的车辆状态、行驶环境以及交通系统的信息,这些信息具有数据量大、覆盖面广和冗余性高等特点。为准确地辨识车辆运动特征,重构完整的车辆运行环境,要求对这些信息进行快速、有效的综合处理,而多源信号处理模块的计算速度与内存容量将直接影响信息处理的准确性和实时性,也将进一步影响驾驶员操作以及车辆的实时控制性能。
针对以上异构网络集成与快速信号处理器设计的问题,智能信息交互系统的设计重点研究内容包含:①多天线电路集成(车-车通信、车-路通信、GPS、4G/5G等)技术;②车载多网络协同的智能网关技术;③面向多样化需求的多网络信息交互标准和通信协议设计;④高运算速度、低成本的新型硬件及软件系统架构;⑤模块化、扩展性强的硬件计算平台。