钎焊手册
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.4 钎缝中熔态钎料的凝固和钎缝的金相组织 Solidification of Mol-ten Filler Metal in Clearance and the Micrographic Structure of the Fillet

1.4.1 共晶钎缝组织 The Structure of Eutectic Fillet

为了减少钎焊时钎料的熔化区间,通常总是尽可能选择熔化温度合适的,其成分接近共晶点或连续固溶体最低熔点的合金当作钎料,例如:用Ni-Cr或Ni-Cr-Si共晶;用Cu-Mn、Ni-Mn连续固溶体最低熔点成分钎料合金钎焊不锈钢和高温合金;有时也常用纯金属当钎料,例如用纯铜钎焊碳钢等。为了改善钎料的各种性能,也会在其中添加一些其他少量元素。

如果熔态钎料和母材之间的反应性很弱,钎焊后的钎缝常会存在和钎料本身相同的结构。如果熔态钎料和母材有共同的主组元或液相有较大的互溶度,则视温度的高低和钎焊时间的长短而会出现共晶或亚共晶的钎缝。图1-11所示为一个典型的共晶钎缝。1000℃时用纯银钎焊铜,由于Cu-Ag二元相图是一个双侧带有限固溶体的简单共晶系,Ag于962℃熔化并铺展时,Cu便向液态Ag中溶入,由于晶界处活性较高,Cu的溶解便首先从这里开始,结果往往会留下犬牙状的晶粒边界。图1-11中黑色部分为Cu,白色部分为Ag。显然,钎焊过程持续的时间很合适,Cu溶入的量正好让钎料的成分处于共晶点附近。如果钎焊时间很短,Cu溶入的量不足,白色的部分就会增加,甚至会出现白色云朵状的Ag初晶。

1.4.2 晶间渗透组织 The Fillet Structure with Intercrystalline Penetration

钎料中与母材不同种的第二组元和母材的液态和固态都有较大的互溶度时,最易产生晶间渗透。这时候熔态钎料与固态母材的界面能,比母材多晶体晶界的界面能小,因而最易渗入晶界。最典型的例子是Zn对Al的晶间渗透(见图1-21)。图1-21a所示为纯Zn钎料在铝表面铺展冷凝后形成的晶花,而从它的剖面(见图1-21b)则可看出Zn已深深渗入铝的晶界,形成Zn-Al(α)共晶;与此同时,Zn又由于在Al中的固溶度也很大而渗入铝的晶粒,形成并不均匀的固溶体α。

类似的例子在用Cu-P8钎料钎焊铜,用Ag-Cu27(共晶)钎料钎焊铜或银,用Au钎料钎焊铂或钯时都能看到。这种现象随温度的提升和加热时间的延长而加剧。一个不符合规律的例外是含硼的钎料。硼在液态时能和其他金属互溶,形成共晶和一些金属间化合物,但在固相时硼却几乎不溶入所有的金属,不生成固溶体。按理这种钎料不应有严重的晶间渗透,但由于硼的原子半径只有0.091nm,是固体元素中除C以外最小的,它具有极大的活动性,因此也具有较强的晶间渗透能力。用含硼的镍基钎料在约1200℃钎焊不锈钢或镍合金时,常可看到钎缝周围晶间渗透的现象。

图1-21 Zn向Al的晶间渗透
Fig.1-21 Intercrystalline penetration of liquid Zn into Al

1.4.3 有化合物生成的钎缝组织 The Fil-let Structure with Intermetallics

钎料中一个组元如果含量较大又能与母材生成金属间化合物,则在钎缝中会出现这些化合物的特征。如果这些金属间化合物是固液异分的,这些化合物在钎焊条件下(作用时间不过十数秒),常常会呈笋状生长(见图1-13)[19]。在用纯锡或含Sn量较高的锡合金钎料钎焊铜、银、铁、钴、镍等时,均可看到这种生长方式。但是在温度较低、反应时间较长的情况下,例如超过5min,则化合物往往又会呈扇状生长[29]。

钎料中一个主要成分组元与母材生成固液同分化合物时,这个化合物往往以层状或连片地生长[19]。图1-22所示为用Cu-Sb76钎料在660℃钎焊铜时的界面结构。图1-23所示为Cu-Sb系合金相图。图1-22的下方是母材铜,由于Sb能溶入Cu形成固溶体,在金相照片中可以看到与母材接壤处形成一条颜色稍深的均匀固溶体带α;在固熔体带的上方还可以看到颜色又稍深一些的带,经能谱分析证明,它是以固液同分化合物Cu3Sb为主的β相。β相的上方是β相和Sb形成的共晶。由于Cu含量稍过剩,照片显示的是一个亚共晶组织,共晶中点缀有枝状的β相。显然,照片显示的是钎焊条件下的非平衡结构。上述说明固液同分化合物的生长是采取平面层状的方式,这对钎焊来说并不是一个好的现象。

图1-22 用Cu-Sb76钎料在660℃钎焊铜时的界面结构
Fig.1-22 The interface structure as Cu brazed by filler metal Cu-Sb76 at 660℃

用Cu-Sb32共晶合金[w(Sb)=32%]作钎料来钎焊铜合金是一个不错的选择。它于645℃熔化,是一个难得的中温铜钎料。和Cu-P8.3共晶钎料(熔化温度为714℃)很相似,它们分别是由固液同分化合物Cu3Sb或Cu3P与铜形成的共晶合金。本来这些固液同分化合物很脆,又呈层状,钎焊接头强度会是很差的,但是由于它们在钎焊过程中能与Cu迅速形成组成很宽的固溶体,使化合物层降至极低,甚至消失,这才使得这些钎料合金臻于实用。在另外一些情况下,就不那么好了,例如用含P的钎料钎焊铁合金,用镉基钎料钎焊铜合金,因为它们不能与母材生成组成很宽的固溶体,这时固液同分化合物的脆性便充分显露,使接头的强度很低。

固液同分化合物往往具有独立和完整的晶格,有盐的某些通性,如性脆、导电性差、热导率较纯金属低等,特别在钎焊时常形成层状或连片结构,这就使得在选择钎料时,需要特别注意避免生成这类化合物,除非这些化合物能溶入母材,形成组成很宽的固溶体。

图1-23 Cu-Sb系合金相图
Fig.1-23 Phase diagram of Cu-Sb alloys

在固液异分化合物存在时情况则有很大不同,因为这种化合物生成时,是由一个固相组元(如母材)与液相(钎料)反应生成的,在钎焊时,数十秒内生成的化合物都不是纯相,这就减少了作为纯化合物相的属性。此外,这种化合物生成时或多或少以笋状方式生长,它像钉子一样嵌入钎缝,更增加了钎缝的强度。图1-24所示为用纯Sn钎焊铜丝时Cu6Sn5(η相)在钎缝中生长的情况。

图1-24 用纯Sn钎焊铜丝时Cu6Sn5(η相)在钎缝中生长的情况(350℃,10s)
Fig.1-24 The growth of Cu6Sn5 (η)phase of two copper wires soldered by pure tin at 350℃for 10s