钎焊手册
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

1.2 熔态钎料对固体母材的润湿和铺展 Wetting and Spreading of Molten Filler Metal on a Solid Base Metal

1.2.1 固体金属的表面结构 The Surface Structure of Solid Metal

固体纯金属的表面结构如图1-1所示。最外层表面有一层0.2~0.3nm的气体吸附层。随金属性质的不同,吸附气体的种类和厚度有一定的差别,通常主要吸附的是水蒸气、氧气、CO2和H2S。

在这层吸附层之下,有一层3~4nm厚的氧化膜层。所谓氧化膜层,并不是单纯的氧化物,常常是由氧化物的水合物、氢氧化物、碱式碳酸盐等成分组成。有的呈低结晶态,此种膜结构比较致密,能保护基底金属免于进一步氧化,如γ-Al2O3、Cu2O(红色)等;有的则较疏松多孔,如Fe2O3、CuO等。在氧化膜层之下则是一层1~10μm厚的变形层,这是由于压力加工所形成的晶粒变形的结构;在变形层与氧化膜之间还有薄薄的1~2μm厚的微晶组织。

图1-1 固体金属的表面结构
Fig.1-1 The surface structure of solid metals

对合金来说表面结构还要复杂得多,通常表面能较低的、亲氧的组元,尽管在固态情况下也会扩散并富集于表面,形成复杂多元组成的表面膜[1]。随着储存期延长,这层膜还会进一步增厚。根据膜的基本性质,分别需要采用还原性的酸(HCl、HF、稀硫酸、有机酸),氧化性的酸(HNO3)或碱(NaOH、KOH)来除去。

1.2.2 熔态钎料与固体母材的润湿 Wet-ting of Molten Filler on Solid Base Metal

了解钎焊的过程,首先需要了解熔态钎料与母材的润湿过程。现在先从润湿的物理状态开始讨论。

1.2.2.1 液滴在平面固体上的润湿行为

一滴液体在固体表面润湿时如图1-2a所示,液滴与母材之间会出现润湿角θ,如果液滴和固体间仅以色散力相互作用,也就是说,不存在任何物理的互溶、渗透以及任何的化学反应,这时润湿角θ与固体的表面张力Fs(亦即是固体与空气的界面张力),液体的表面张力Fl(亦即是液体与空气的界面张力)和固-液的界面张力Fsl存在以下的关系,称为Young’s平衡式:

Fsl=Fs-Flcosθ (1-1)或

由式1-1可以看出,当润湿角θ为0°时(见图1-2b),cosθ=1,也就是说,完全润湿时,固-液间的界面张力是固、液表面张力之差。

Fsl=Fs-Fl (1-3)

当润湿角为90°时(见图1-2c),cosθ=0,固-液界面张力等于固体的表面张力。

Fsl=Fs (1-4)

当润湿角θ等于180°时(见图1-2d),即完全不润湿的情况下,cosθ=-1,固-液的界面张力是固、液表面张力之和:

Fsl=Fs+Fl (1-5)

图1-2 液滴在固体表面的润湿
Fig.1-2 A liquid drop wetting on the solid surface

从这里得出的结论是:界面张力Fsl和润湿角θ呈正相关,也即润湿角θ越小,界面张力Fsl也越小。或者换句话说,要想液-固润湿得好,就要降低固-液间的界面张力。

1.2.2.2 液体在狭窄缝隙中的润湿行为—毛细现象

将一根直径为λ的毛细管插入液体内(见图1-3),液体和管壁就会产生一个润湿角θ。在润湿角θ和液体表面张力Fl(液体和空气之间的界面张力)综合力的作用下,管内的液面会发生变化。

θ<90°时,管中液面会上升,如水在玻璃管中就是这样(见图1-3a)。这个过程是这样的:由于液体润湿了管壁产生了润湿角θ,管内的液面就会出现深的弯月形曲面,但这时液体的表面张力则力图将弯月面拉平,这样就使得液面微有上升。但是液体又向上润湿一个新的θ角,表面张力再度拉平液面。如此反复,液面就不断爬升。爬升的过程中却同时受到液柱重力的反制。当这个润湿角和液体表面张力综合形成的爬升力和液柱所受重力平衡时,液柱就会稳定在一个h的高度上。下面等式左侧是爬升力,右侧是液柱所受的重力:

式中 Fl——液体表面张力;

θ——润湿角;

g——重力加速度;

ρ——液体的密度;

λ——毛细管的直径;

h——液柱高度。

图1-3 毛细管中液面的变化
Fig.1-3 Variation of the liquid surface in capillary tubes

对于固定的一种液体,分母中gρ乘积的值是固定的。可以看出,毛细管中液面爬升的高度和管径λ成反比,和液体表面张力Fl(液体和空气之间的界面张力)成正比,还和润湿角θ成反比(这是因为θ在0°→90°时,cosθ是从1减少到0)。也就是说,管径越小,液体的润湿角越小,液体的表面张力(即液态钎料与空气的界面张力)越大,越有利于液柱的爬升。

θ=90°时,cosθ=0,h=0,毛细管内外液面持平,没有爬升。

但是当θ>90°时,毛细管内液柱不升反降(见图1-3b),因为在90°→180°时(见图1-3b),cosθ值是0→-1,h值成为负值,所以这时液面会出现下降,θ值越大,液面下降得越多。可以见到的实例是玻璃毛细管中的水银。

在实际的钎焊过程中,情况有很大的不同,遇到的不是毛细管而是两片母材夹成的大面积间隙,而且常常间隙是水平放置的,较少像上述毛细管的垂直放置(见图1-4)。

图1-4 液体在平面间隙中的润湿
Fig.1-4 Wetting of the liquid in a gap between two plates

可以看出,在考察钎焊过程的实际时,情况要复杂得多,很难定量地描述液态钎料在间隙中的流布。这时不妨将上述液柱的爬升力,定性的看成是液态钎料在间隙中向前流动的驱动力,那么就同样也可以得出:钎焊时母材间隙越小,液态钎料润湿母材的润湿角越小,液态钎料的表面张力(即液态钎料与空气的界面张力)越大,越有利于液态钎料在母材间隙中的向前流布。

在实际钎焊过程中,熔态钎料在大面积母材狭缝中流动的行为非常复杂,难于描述。钱乙余等利用X射线荧光增强仪摄制了液态钎料在平行的狭缝中流动的动态模拟。结果表明,这是一个无规则的紊流过程,伴随着熔态钎料的多头前进、包抄、围困和产生夹芯,看来在空气中进行大面积钎焊,钎缝中存在缺陷是难以避免的。为了解决这一难题,提出了不等间隙的钎焊流程,得以有效排除夹芯的产生。

固体的表面张力实际上是固-气的界面张力Fsg。在大气中,固体本身有很多因素都影响自身的表面张力,例如成分、组成、晶格缺陷、表面分凝和力学应变等等。其中表面分凝影响最大。固体的表面张力难以理论界定、测量和控制。但是因为固体的表面张力实际上是固-气的界面张力Fsg,改变固体界面上的气氛,显然会对Fsg能够产生影响。在真空和一些还原性气氛,如氢气中,Fsg会有明显的下降。

液体的表面张力的物理意义和量值明确,是指增加单位表面积液体时自由能的增值。液体的表面张力是易于测定的。其法定单位为mN/m(毫牛/米),以前常用dyn/cm(达因/厘米)。液体金属的表面张力常在200~2500mN/m之间。液体的表面张力随温度的升高而线性下降,因此升高温度有利于润湿。图1-5所示为不同熔态金属的表面张力与温度变化的关系。

图1-5 不同熔态金属的表面张力与温度变化的关系
Fig.1-5 Temperature dependence of surface tension for different molten metals 注:1dyn/cm=10-2mN/cm

以上的叙述局限于液-固金属间仅以色散力相互作用的情况,其间既无化学反应发生,也无相互溶解和原子渗透等物理反应发生。但实际上影响液态金属(钎料)和固体金属(母材)之间润湿行为的更大因素是它们之间的相关系(phase rela-tion)。这已超出式(1-1)讨论的范围。

熔态钎料与母材间如有一定的反应性,通常能够很好地润湿,反之则较难润湿。所谓的反应性,包括液态钎料和母材间的互溶或金属间化合物的生成。然而影响润湿最主要的因素是互溶度。例如液态Zn和固体的Al在500℃有近30%的溶解度,它们润湿得很好。液态Pb和固态Al在500℃时几乎完全没有互溶度,它们极难润湿。这些关系可以从Al-Zn和Al-Pb的相图上看出来。类似的情况如液态Ag在1200℃时与Fe的互溶度几乎为零,而Cu在同样的温度下能溶Fe近5%,实际的表现是前者难润湿而后者则较易。但在这种情况下,如果不用纯Ag,而是在Ag中加入一定比例的、能与Fe互溶的Cu或Zn形成合金,就能大大改善这种银合金与母材Fe间的润湿性。特别是加入Pd,由于它和Fe、Co、Ni、Cu、Ag、Au等金属不但在液相,就是在固相也有完全的互溶度,增加润湿性最有效,由此导致发展许多含Pd的钎料。因此对合金钎料,通常其中各主要成分与母材的相关系,决定了合金钎料与母材润湿的综合效果。

1.2.3 熔态钎料在钎剂(第二液体)中与母材间界面张力的变化 Change of Interfacial Tension between Molten Filler and Base Metal Immersed in a Fused Flux(a second liquid)

由式1-3~式1-5可以看出,无论是润湿处在哪个阶段,要继续降低固-液,也就是要降低熔态钎料和母材间的界面张力Fsl,固体母材的表面张力能否降低都起着决定性的作用。真空钎焊和一些还原气氛的保护钎焊得以顺利进行,就是由于降低了固体母材表面张力Fs的结果。但是通常在大气中进行的钎焊,要想降低固体母材的表面张力几乎是不可能的。但钎剂的使用改变了这一处境。

图1-6所示为母材B上一滴熔态的钎料A被钎剂C覆盖的情形。这时母材的表面张力Fs变成了FBC(母材与钎剂的界面张力),钎料的表面张力Fl变成了FAC钎料与钎剂的界面张力)。而钎料与母材的界面张力Fsl成了FAB,于是在润湿开始前就有

FAB=FBC+FAC (1-8)的关系。

可以看出,要想使钎料很好地润湿母材,就要设法降低FBC+FAC的值,尤其是FBC 值。可是怎样能做到这一点?

图1-6 有钎剂覆盖时液态钎料与母材的界面关系
Fig.1-6 Interfacial relation between molten filler metal and base metal immersed in fused flux

在许多领域都发现,界面上有传质作用发生时,就有界面张力下降的情况发生。Gerbacia[2]在测定水-油界面张力时,在水中滴入了乙醇,在乙醇通过水-油界面时,界面张力下降;Офичерол[3]在测定Cd-Pb和Zn-Bi熔态金属在有Cd蒸气渗入时,表面张力显著下降;Kazakevich[4]发现熔化的Cd向CdCl2中溶解时,界面张力降低;此外,电解时金属和电解质以及熔态炉渣与钢间如有置换化学反应时,也发现界面张力下降。

兰铁[5,6]模拟了钎焊时界面传质对界面张力的影响。以汞滴代替液态钎料,以0.01molCu(NO3)2溶液代替钎剂,在Hg滴上施以负电位,在另一铂电极上施正电位。在一定的电流变化范围内,Cu2+在Hg滴上被还原沉积(传质)并形成合金。用Bashfouth-Adams静滴法测量汞滴-溶液间的界面张力,得出图1-7所示的关系。

图1-7 界面传质速度与界面张力变化的关系
Fig.1-7 Relationship between interfacial mass-transfer-rate and the change of interfacial tension [Hg drop in 0.01mol Cu(NO3)2 solution]

在初始阶段,由于超电压和分解电位的影响,正负极之间施加电位过低,不足以催生界面传质反应,此时界面张力微有上升。电解反应一旦开始,溶液中的Cu2+即向汞滴上还原,析出为金属铜并形成铜汞齐。控制极间的电位,可以获得不同的沉积(传质)速度。从图1-7中看到,界面张力随即直线下降,亦即界面张力下降与界面传质速度的升高成反比。

依此类比,钎剂与固体母材之间界面张力变化应有类似的关系。一项模拟的钎焊摊流实验证实了以上推论的结果,见表1-1。

在表1-1中序号1条件下,钎剂-钎料以及钎剂-母材之间均无传质反应发生,钎料并不能润湿母材Al。在序号2条件下,钎剂-钎料以及钎剂-母材之间同时发生传质反应,因而液态钎料Al-Si共晶合金能够很好地润湿母材。序号2的化学(传质)反应如下:

2Al+3ZnCl2=3Zn↓+2AlCl3↑ (母材)

2Al(Si)+3ZnCl2=3Zn↓+2AlCl3↑(熔态金属)

序号3中液态Pb与Al不能润湿。在序号4条件下,钎剂只与母材间有传质反应,而与钎料Pb没有传质,润湿尚未发生。在序号5、6中则在两个界面上均有传质,特别是序号6传质速度更快。结果使得Pb与Al几乎完全没有互溶度的条件下得以良好润湿。

表1-1 混合熔盐中熔态钎料在Al面上的润湿与界面传质速度的关系
Table 1-1 Wetting of liquid filler metal on Al surface immersed in molten salts under the influence of interfacial mass-transfer-rate

界面张力的下降与传质速度有关,但实际钎焊时只在一定时间内能够保持直线下降速度,随着传质速度减缓,界面张力就随着上升,这也是钎剂的活性有一定时效的原因。

传质速度还需与传质的物质和钎料或母材的合金化速度相匹配,如果传质速度过快,传质的物质来不及与母材或钎料合金化,则会使析出的金属呈微粒状悬浮在钎剂中,表现出来是钎剂的发黑。

在实际运用中,传质速度是根据母材的主金属与钎剂中析出(传质)物质之间的电极电位差而确定的。不同金属离子在母材上传质速度的比较可以参考熔盐中的电位序[7](参见表2-5)。

以上只述及传质形式的一种。电化学反应的传质往往是双向的,例如上述铝钎焊过程中,除有重金属沉积的传质外,还同时有Al→Al3++3e反方向的传质。物理过程的传质则往往是单向的,例如母材或氧化膜的溶解、气相渗入、渗透等。不管传质的类型,也不管传质的方向,只要当它们在界面上发生时均会有效地降低界面张力。

钎剂的施加大大增加了界面张力降低的可能性。在一些场合,气相中含有能够向母材和钎料同时渗入的金属蒸气时,也非常有利于熔态钎料对母材的润湿。例如真空钎焊铝合金时,施加Mg的蒸气可大大提高熔态Al-Si共晶钎料对母材的润湿能力。其原因就是除了Mg蒸气能破坏铝的氧化膜外,还同时向母材和熔态钎料渗入进行了传质,从而降低了钎料和母材间的界面张力。此时Mg蒸气事实上起了钎剂的作用。

以上所述是钎剂的活性机制,当然钎剂的功能还不止于此。其他重要的作用还有:松动、脱除或溶解氧化膜;覆盖在焊点表面防止空气的进一步氧化等。

1.2.4 金属母材表面的氧化膜及其去除机制 Oxide Film on Base Metal and its Removal Mechanism

无论是熔态钎料还是固体母材,其表面总是覆盖一层厚度不等的表面膜。熔态钎料要与母材发生润湿,必须要排除这层表面膜。

习惯上通称的“氧化膜”,实际上情况很复杂,最好称之为表面膜。对于纯金属而言,该金属与周围气氛所产生的结合产物(膜)的稳定性取决于膜的结构和存在的条件。亲氧的金属铝、钛、铍、镁等,它们的表面膜主要是氧化物。另一些金属如铜、铁等,它们除与氧结合外,还与CO2有相当的亲合力,表面层中常发现有碱式碳酸盐存在。两性金属,如锡、锌等表面层常存在Sn(OH)2或Zn(OH)2等。

表面膜的结构决定膜的致密度。一般情况下,结晶度低或者无定形结构的表面膜具有较大的致密度,例如铝表面的γ-Al2O3,铁表面的Fe3O4,铜表面的Cu2O都具有低的结晶度和高的致密度,能够完善地保护金属免于进一步氧化。在一般的条件下,加热将促进表面膜的增厚。

用酸或碱总能有效地溶去这层表面膜。问题是干净表面与周围气氛反应速度如果很大,新的表面膜又会立即生成,例如铝、镁、钛等活泼金属。铜的氧化反应速度较低,清洗后则可以保持一段时间的赤裸表面。因此从钎焊角度来说,用酸或碱清洗金属表面,主要是为了除去因长时储存留下的厚氧化皮。过度的清洗将使表面出现微观的凹坑。

金属面上的表面膜分布并不均匀,沿晶界处膜较厚,晶粒中心则较薄。尽管如此,但沿晶界处却又是膜与基底金属结合的薄弱环节,活性钎料或钎剂与母材作用时,常可看到由此处开始破膜渗入[8]

合金的表面膜情况更为复杂。合金中有利于降低表面能的组元以及亲表面气氛的组元,即使在固体状态也不停地向表面扩散,加热时更是明显,形成结构复杂的表面膜。例如:含微量Al的GH37镍基合金加热时表面膜几乎全为Al2O3;含微量Ti的铁镍合金表面膜是TiN+-TiO2+[9],而表面膜的成分中却往往并未有基体金属参加;含Mg的铝合金尽管Mg含量很少,在表面膜中也明显出现MgAlO4相;含痕量的Ga的Sn-Pb合金的表面膜中,Ga的含量是体相的35000倍[10]。由于这种扩散,使得合金的某些组元和表面膜形成纵深的结合,合金表面膜与基体金属的结合往往比纯金属的结合要牢固得多。

母材表面膜的脱落或去除无疑是钎焊过程的一个重要环节,其机制常引起许多钎焊研究者的兴趣。在钎剂的作用下,表面膜脱除的机制有溶解、剥落、松动或被流动的钎料推开等过程。对于不同的母材,上述的机制会有所侧重,有的是两种并重,有的甚至四种作用兼而有之,使钎焊过程最终得以完成。

在较高温度下钎焊铜合金或铁合金时,其钎剂的主成分是B2O3,又称硼酸酐。熔融态硼酸酐对过渡金属(除了碱金属、碱土金属、稀土金属以外的大部分金属)的氧化物有很大的溶解度,并且溶后呈现不同的颜色。分析化学中常用小的铂丝圈蘸B2O3(或H3BO3)和未知的氧化物一同在火焰上灼烧至熔化,观察透明小硼砂珠的颜色以鉴定氧化物的成分。这时Cu2+是蓝色的,Cr2+是绿色的,Ni2+是棕黄色的,Co2+是深蓝色的等。在钎焊铜合金时,表面膜与硼酸酐或硼砂产生下列反应:

CuO+2H3BO3=Cu(BO2)2+3H2O或CuO+B2O3=Cu(BO2)2

CuO+Na2B4O7=Cu(BO2)2+Na2B2O4并溶于过量的硼酸酐之中。这是一个典型的溶解作用去除氧化膜的机制。黄铜表面膜中的ZnO、铁合金表面的Fe2O3均以类似的方式生成Zn(BO2)2和2Fe2O3·3B2O3,并溶于过量的B2O3而被除去。

多数合金表面膜的脱除不是一个简单的溶解机制,在一些含铬、钛、钨、钼的合金钢或耐热钢钎焊时,尽管在B2O3中加入氟化物增强钎剂的活性也不足以脱除表面膜。在钎焊高铬合金时,甚至在钎剂中加入Al-Cu-Mg合金以增强活性,在高温850~1150℃下靠置换反应使铬氧化膜破坏脱除[11]:

Cr2O3+2Al=Al2O3+2Cr

Cr2O3+3Mg=3MgO+2Cr

铝及铝合金表面膜在以氯化物为主的钎剂中的去除,基本上是一个松动、破碎,最后为流布的钎料所推开的综合过程。较高温下γ-Al2O3在氟化物熔盐中有一定的溶解度[12],但以氯化物为主的铝钎剂中氟化物含量很低,因此铝氧化膜在氯化物钎剂中的溶解作用并非主要的。但一项研究表明:在熔融的全氟化物钎剂(K3AlF6—KAlF4共晶)中,铝氧化膜主要是被溶解去掉的[13]

在钎剂的作用下,一旦钎焊过程开始,往往在几秒至十几秒钟内便完成。除非表面膜在钎剂中以极快的速度溶解(例如高温下CuO在B2O3中的溶解),表面氧化膜在钎剂中的去除机制通常不会是单纯的一种溶解作用,因此对实际钎剂钎焊中的去膜作用,宁可认为是一个综合的过程。

一些不另加钎剂而能在空气中进行钎焊的过程,往往靠钎料中的挥发组元在加热时与表面膜反应,将其还原破坏或从母材表面膜的破隙渗入膜下,再由它和母材的互溶与润湿以及钎料的流布来推开氧化膜。例如用Cu-P钎料钎焊铜,锌基钎料钎焊铝合金等。

真空钎焊的去膜机制也使许多研究者感兴趣。钎焊时金属表面膜的被破坏,对不同的金属合金其机制是不同的。微量还原性气氛的存在无疑对纯铜表面氧化膜起还原作用。在真空条件下,钛的氧化膜在温度高于700℃时强烈地溶入钛中形成α-Ti,一种Ti和O的固溶体[14]1793,是氧化膜溶于母材而被去除的一个例子。另一些情况是:金属表面膜在真空中加热时发生破裂,熔态钎料由裂缝渗入而润湿母材[15]。真空钎焊不锈钢时,温度超过900℃,其本身所含的碳即足以使氧化膜被还原而破坏[16];而真空钎焊铝时,是微量Mg蒸气对铝氧化膜的置换与破坏[17,18]

由此可见,无论哪一种钎焊方法和对象,其表面膜的脱除机制都不是完全相同的,不可能用一个统一的模式来解释去膜过程。另外,钎焊实际上是破膜—溶解—渗透—润湿—铺展—凝固,是一个相当复杂交错的过程,并不一定能明确地划分出各个阶段来,尤其不应将“去膜”看成是一个独立的阶段,看成是“只有母材表面膜先去光了才会开始下一个过程”。

1.2.5 熔态钎料在固体母材上的铺展 Spreading of Molten Fille rMetal on Solid Base Metal

实验表明,熔态钎料润湿母材以后,尽管用了活性很强的钎剂,并不一定就会很好地在母材上铺展。这样的实例很多,例如,纯锡(包括高锡合金)在钎剂作用下润湿铜母材以后就很难再顺利铺展,同样的例子是纯锌润湿铝以后的状态。其原因在于熔态钎料与母材之间特殊的相关系(Phase relation)。实验表明,这种难再铺展的现象往往发生在熔态钎料与母材间产生过度的和快速的相间反应,如生成金属间化合物或互溶。这阻碍了熔态钎料向前流动和铺展[20]

以熔态锡在铜面上润湿后的状态为例。图1-8所示为280℃时熔态纯锡与铜母材作用0.5s后的Cu-Sn界面。下面黑色部分为铜,亮的部分为锡层,最上面为锡层与空气的界面。可以看到,在如此短的反应时间内,铜-锡界面上已经有众多的Cu6Sn5金属间化合物生成。高度不一,最高的竟超过20μm,并且锡还向上扩散形成共晶物相。这样进行的一切行为都会“抓住”和阻止锡不使其向前流动。在含锡量高的锡基钎料与铜相互作用时也有类似的现象。

图1-8 280℃时熔态Sn与Cu母材作用0.5s后的Cu-Sn界面
Fig.1-8 The interface figure between Cu-Sn after reaction of molten Sn with solid Cu at 280℃for 0.5s

显然,要想增加锡在铜上的铺展性,就必须抑制铜-锡界面上金属间化合物的生长趋势。一个有效的办法就是向锡中加入一种对铜和锡都是惰性的金属,也就是它对Cu和Sn之间都没有化合物生成。这时,由于这个惰性合金元素的加入,就降低了锡在整个钎料合金中的浓度。当惰性元素的量足够时,Sn和Cu之间生成化合物的趋势就大为削弱,锡钎料合金的铺展性会因此大大提高。周期系中,能够符合这一条件的,只有Pb、Bi和Tl三个元素。图1-9所示为Sn与Pb、Bi、Tl以及Cu与Pb、Bi、Tl之间的相关系。

锡和铅组成的Sn-Pb共晶合金是人们最熟悉的焊锡。和纯锡大不一样,它在铜上的铺展率很高,就是由于和Cu不发生反应的Pb稀释了Sn的缘故。同样,和铜不发生反应的铊、铋和Sn组成的合金钎料也具有极良好的铺展性。Sn-Bi系共晶较脆,不易加工。Sn-Tl系性能良好,熔化温度为170℃。但铊是一个比铅毒得多的元素。

图1-9 Sn与Pb、Bi、Tl以及Cu与Pb、Bi、Tl之间的相关系
Fig.1-9 The phase relations between Sn with Bi,Pb,Tl and Cu with Bi,Pb,Tl

用和母材反应性强的元素和锡搭配组成的钎料,只会具有更差的铺展性。Sn-Zn共晶是一个熟知的钎料。但熔态的它在Cu面上比纯锡还难铺展。这是由于在钎料的熔态温度下,Zn和Cu有超过30%(质量分数)的固溶度,Zn此时便迅速向Cu内渗入。与此同时,在固-液界面上还会有化合物CuZn5生成。因此不但未能起到减弱Sn对Cu的影响,反而更增加了铺展的阻力。

根据以上叙述可以看到,企图往高锡钎料合金中加入某些微量添加元素来显著改善钎料的铺展率,除非能明确做到抑制了Cu-Sn间的反应性,否则其努力是难以有明确成效的。

在过渡金属中,相同温度下Ni与Sn(液)生成金属间化合物的倾向比Cu-Sn(液)间的作用要弱得多[19]。实验表明,如果在Cu上镀Ni后,再用高锡合金钎料钎焊,就会发现铺展性要比在Cu上好得多。

另一个润湿而难以铺展的典型实例是熔态Zn在Al上的行为。它们之间不是由于生成了化合物,而是因为在熔态Zn的温度下,Zn在Al中有超过80%(质量分数)的固溶度,此时Zn迅速溶入Al而不向周边铺展,如果Al母材较薄,常可见到Al被熔穿。如果向Zn中添加另一种惰性元素,它和Zn能够形成熔化温度较低的合金,而它和Al之间是惰性的,和Zn也不生成化合物,稀释了Zn的浓度,必将会大大改善此Zn合金在Al上的铺展性。在元素周期表中符合这一条件的元素有:Sn、Cd、Pb、In、Bi、Tl等6个。实验表明,Zn和这些元素组成的共晶合金钎料在Al上都有极好的铺展性。在Zn中加入和母材相同的元素构成的共晶,例如Zn-Al共晶也会有类似稀释Zn的效果。当然,要成为一个好的钎料还要符合其他的一系列条件。

和熔态Zn在Al上的行为相似的还有熔态Cu在Ni上的行为。这是因为Cu和Ni生成连续固溶体,熔态Cu向Ni中迅速固溶渗透而难以铺展。在Cu中加入和Ni几无反应性的Ag,冲稀了Cu,所以熔态Cu-Ag钎料在Ni上就有很好的铺展性。相反,熔态的Cu和Fe之间只有弱的固溶性,所以它本身就在Fe上铺展得很好。

总之,熔态钎料合金与母材之间只应该有适当的物理的或化学的反应性,这样才有利于熔态钎料在母材上的润湿和后续的铺展。仅仅从合金的角度考虑钎料在母材上的铺展性,因为受到金属的本性以及熔态钎料-母材之间相的关系的约束,可以控制的余地实在不大,重要的是还应该从钎剂的作用进行考虑。归根结底,提高熔态钎料在母材上的铺展性就是要控制熔态钎料和母材之间只应该具有适当的反应性[20,21]