1.1.3 “新医科”与智能计算
2021年年初,我国教育部高等教育司将全面加强“四新”的深入建设列入工作要点,并持续推进。该项工作的本质是在改革中寻求突破,在创新中探索、升华,最终将高等教育的质量提升到新的高度,加快高等教育强国的建设步伐。“四新”专业建设的初衷是,通过基础学科与新兴学科的相互交融,调整并优化专业结构,优化实习与实验教学的组织结构,把基础学科的人才培养和工科、医学等专业紧缺人才培养相结合,从而培养全能型紧缺专业人才。
“新医科”建设是指在人工智能、大数据为代表的新一轮科技革命和产业变革的背景下,医工理文融通,在原有医学专业的基础上,发展精准医学、转化医学、智能医学等医学新专业。医学教育是卫生健康发展的重要基石,是医学人才的培养摇篮,也是我国卫生健康事业的承载体。在医疗人才的培养过程中,“新医科”统领创新、优化结构,将新科技革命的内涵与人文关怀的标志词“健康”相结合,对传统医学学科加以深化改革,在探索中改变,在融合中创新,从而为国家培养一批全素质的全科医学人才。
1.精准医学
精准医学是“新医科”的专有名词之一,是指根据患者的生物学信息以及临床症状和体征,对患者实施健康医疗和临床决策的个性化处置。
我们在日常生活中可能会经历各种疾病。大多数情况下,医生会结合自己的经验以及患者的临床表现做出判断,形成诊断结果和治疗方案。精准医学的目的是针对分子和基因组加以判断,医疗人员也将根据患者的个体差异加以分析,在用药和剂量等细节上做出调整,从而更有针对性、更精准地实施医疗服务。但是,精准并不是为每个个体提供不同服务的过程,而是针对不同患者对同种疾病感染性的不同、对某种治疗手段适应与否等情况,建立模型,进行分类,最终提供不同解决方案的过程。
精准医学不仅支持疾病的治疗,而且支持疾病的预防。例如,女性可能会因为家族遗传等原因患乳腺癌或者卵巢癌等疾病。通过精准医学的建模,可以根据家庭病史或者基因等进行判断,筛查一个人可能罹患的疾病,并且根据个体的差别采取措施,预防疾病的发生。
当然,精准医学的发展还需要考虑个体所处的环境等因素,在收集数据的时候需要更加精准,尽可能反映出真实的个体状态。将“真实世界证据”理念引入精准医学之中,会使个体化内容更加全面,从而使个体化精准医疗的水平得到提高。图1-1给出了精准医学的架构。
图1-1 精准医学的架构
2.转化医学
转化医学是“新医科”的重要方向,它是将基础医学研究和临床治疗结合的一种新的思维方式,属于生物信息学范畴。转化医学将理论和自动化技术以及科研与工程紧密结合,在实践与应用中有效地缩短了基础医学与临床医学之间的距离。
现代医学的发展历史证明,在未来,如果医学想取得突破性进展,就要努力尝试与其他学科融合,将理论与实践相结合,从实验室走向临床。可以说,转化医学的产生顺应时代背景。医学从业者探索的脚步从未停歇,全世界的医学水平也越来越高,如何让人类的健康能从这样的进步中受益呢?2003年,美国国立卫生研究院(NIH)正式提出了转化医学的概念,旨在将基础知识向临床治疗转化,促进健康水平的提升。其主要工作是加快基础研究成果的转化速度,让成果能真正投入到临床中,为患者带来最大限度的帮助,真正实现其社会价值。无论是药物的研发还是治疗方法的创新,无不需要转化医学。例如,在研制一种新型药物时,即使在应用到临床前作用良好,也不一定能够通过治疗作用确定阶段,很多药物由于毒性或者其他因素,无法体现更好的治疗效果,就会被淘汰,从而避免药物开发的浪费。转化医学的研究过程可以加速这一比对过程,针对动物和人体临床的差异,更合理和高效地进行药物的研发。图1-2给出了转化医学中心的架构。
图1-2 转化医学中心的架构
3.智能医学与智能医学工程
智能医学研究物质、能量的运动规律,以及以物质和能量为载体并运动变化的信息的接收与发送的方法。物质、能量和信息是智能医学研究的重中之重。智能医学不仅注重细胞的研究,而且重视人体整体空间的运动变化。也就是说,它研究人体中空间通道的变化。
智能医学工程是指以现代医学与生物学理论为基础,融合先进的脑认知、大数据、云计算、机器学习等人工智能及相关领域工程技术,研究人的生命和疾病现象的本质与规律,探索人机协同的智能化诊疗方法和临床应用的新兴交叉学科。智能医学工程作为一门新兴的学科交叉度极高的专业,紧密结合学科的发展趋势,充分发挥数据感知、数据分析、智能决策等人工智能领域的科研成果,以临床需求作为出发点和落脚点,结合精准医学和转化医学等“新医科”领域的创新,架起理论到实践、实验室到临床的桥梁。智能医学工程面向医学影像、生物医学信息、医学检验、医学信息、疾病诊疗等领域革新的需求,以电子、计算机、互联网与物联网、人工智能、3D打印、虚拟现实、增强现实、脑机接口等工程技术为基础,发展医学智能感知、医学大数据分析、医学智能决策、精准医疗、医学智能人机交互等核心医学技术,并应用到智能医学仪器、智能远程医疗、智能医学教育、新药研发、智能医学图像分析、智能诊疗、智能手术、精准放疗、神经工程、康复工程、组织工程、基因工程等医疗相关领域。
智能医学工程的应用领域非常广泛,下面以智慧医疗为例进行说明。
智慧医疗通过打造以电子健康档案为中心的区域医疗信息平台,利用物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,达到医疗的全面信息化和智能化。图1-3给出了智慧医疗的架构。该架构包括医疗物联网、医疗云计算/大数据分析和云服务三层结构,分别完成数据采集、知识发现和远程服务的工作。智慧医疗将医院的管理成本降到最低,通过大数据技术将医院系统、卫生系统以及家庭健康系统相关联,充分发挥了智能的优势。
图1-3 智慧医疗的架构
智能医学影像技术是人工智能和医学影像技术的结合。以往,医生看一张CT片的时间往往很长,但是人工智能可以把这个时间缩短到秒级。难能可贵的是,人工智能可以避免医生由于经验不足或者外界因素造成的肉眼观察遗漏,更加高效、精准地进行分析和判断,供医疗人员进行后续的处理。南开大学计算机学院程明明教授团队提供部分算法架构支持的肺炎CT影像AI筛查系统,已在国内40家医院应用部署,辅助医生开展快速诊断、程度评估、病程动态监测等工作。在该系统持续运行的前50余天里,累计检测筛查8.1万个病例,协助医生确诊6000余例,系统敏感度(正确确诊率)98.3%,特异度(正确排除率)81.7%。该系统完成300张CT影像的病例的计算,只需10秒左右。
智能医学仪器可以利用人工智能自动化地完成医疗过程。例如,常见的AR辅助手术可以帮助医生在千里之外实施医疗救治,近红外投影可以帮助护士精准而轻松地找出患者的血管。
智能健康管理系统通过大数据对患者的身体状况以及医疗状况进行支撑。在智能健康管理系统的监督下,人类可以实时监控自身和家人的身体状况,预防疾病的发生。
智能药物挖掘可以对药物进行高效筛选。传统的基于试错的药物研究周期长(12年左右)、成本高、成功率低,基于人工智能的虚拟筛选技术可以取代或增强传统的高通量筛选过程。
4.新技术助力医学研究
(1)蛋白质结构预测
蛋白质结构预测是生物信息学与理论化学追求的重要目标之一,它在医学(例如药物设计)和生物技术(例如新的酶的设计)中也是非常重要的。2021年7月,DeepMind团队在Nature发表论文,介绍了AlphaFold对人类蛋白质组的准确结构的预测工作,得到的数据集涵盖了人类蛋白质组近60%的氨基酸的结构位置预测,且预测结果可信。施一公院士用“三个影响”评价了这一工作。第一个影响是对结构生物学领域的影响,这是该领域的一项颠覆性突破,可以说AlphaFold预测的结果很可能就是事实,从已有数据来看,它的预测相当精准。第二个影响是对生物化学、细胞生物学、遗传发育、神经生物学、微生物学、病理/药理等学科和研究领域的影响,这会大大改进人类对于生命过程的理解。第三个影响可能会超越生命科学的界限。AlphaFold的预测结构如果广泛应用在生命学科各分支或创新制药方面,会给社会和人类带来很多好处。
(2)远距医疗
据Healthcare IT News报道,堤夫特地区医院从2005年开始考虑引进远距医疗。该医院的远距医疗主管Jeff Robbins认为,远距医疗将是未来趋势。因此,2017年,他们与非营利机构GPT合作,后者在美国的11个州负责针对医院及其他医疗设施开发远距医疗系统。
堤夫特地区医院通过使用GPT开发的网络,帮助医院与相隔很远的养护之家、学校诊所、急诊室以及不同医疗团队进行连接。远距医疗系统中包括屏幕、摄像头、键盘与遥控器,医生可以通过系统中的多个设备观察患者生命体征,并利用高清晰度摄像头查看皮肤或伤口等。
Robbins认为,双方合作后,该院医生可以帮助其他地区患者进行诊断和治疗,减少约诊未到的情况,治疗更多患者,并能更好地追踪患者。远距医疗则让该医院拥有更多病房,降低了病人的死亡率和并发症。另外,居家监测也可降低医疗成本。
(3)借助AI算法,预测患病风险
美国斯坦福大学的研究团队结合基因数据和电子病历(EMR),成功地通过人工智能算法预测出罹患腹主动脉瘤的风险。据媒体报道,这项研究受到美国国立卫生研究院资助,通过AI算法结合基因和EMR数据,即可检测腹主动脉瘤的遗传风险因子,精准度与临床筛检结果不相上下,预测高风险族群的精准度甚至高达70%。未来,每个人都会有基因数据,进而可以预测整体的疾病风险,并采取相关的措施。
(4)利用AI判断抑郁症
麻省理工学院的研究人员开发出一种神经网络,能够对患有认知功能障碍的可能性做出预测,准确度较高。在一定程度上,可以将其理解为一种抑郁症检测器。
一般来讲,医生需要将经过验证的问题与直接观察相结合,诊断病人是否患有抑郁症。根据该团队的数据,他们的人工智能网络能够在没有条件性问题或者直接观察的前提下,得到类似的诊断结果。
在这项研究中,参与者的回答将以文本和音频形式记录下来。在文本式检测中,人工智能网络能够在大约7个问答之后得出预测结果。而在音频式检测中,人工智能网络需要大约30个序列才能给出结果。据研究人员称,其平均预测准确率达到77%。